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INTRODUCTION 

A group of computer scientists and mathematicians at 
Brown University has been engaged in the study of 
computer graphics for the past eight years. During the 
course of these studies a variety of topics has been inves­
tigated, in particular, during the last few years, the use of 
microprogramming for implementing graphics sys­
tems.2021' In early 1971, Professor Andries van Dam and 
his associates submitted a threefold research proposal to 
the National Science Foundation. The problems to be 
investigated were: 

(1). Inter-Connected Processing (ICP-ing) between a 
central computer and an associated satellite proces­
sor, with the goal of a dynamically alterable solu­
tion to the "division of labor" problem; program 
modules would be dynamically linked in either 
machine as a function of availability and cost of 
resources and response time; 

(2) Programming aids at the source language level for 
the automatic generation of data structure manipu­
lation subroutines and symbolic debugging of data 
structure oriented applications programs; 

(3) The development and use of the Language for Sys­
tems Development (LSD),22 a high-level systems 
programming language, for generating the applica­
tions and systems software for both the central 
computer and the satellite in such systems: 

An interactive graphics system is an excellent paradigm 
for such investigations since graphics applications. 

(1) are typically very large in terms of memory space 
required; 

(2) maintain large data bases, many with intricate 
(list-processing oriented) data structures; 

(3) have processing requirements that change dynami­
cally, varying from very heavy (e.g., structural 
analyses of a bridge) to very light (e.g., inputting a 
command); and 

(4) require real-time response. 

* This work is sponsored in part by the National Science Foundation, 
grant GJ-28401X, the Office of Naval Research, contract N000-14-67-A-
0191-0023, and the Brown University Division of Applied Mathematics. 
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The Brown University Graphics System (BUGS)1* was 
designed as the vehicle for performing this research. Prin­
cipally, the configuration consists of an IBM S/360-67 
running the CP-67/CMS time-sharing system,10 used by 
the entire Brown University community, and a satellite 
display station, as illustrated in Figure 1. This reasonably 
powerful satellite configuration provides such facilities as 
program editing and compilation, debugging tools, and 
most importantly, application processing power and data 
storage. However, because of the two rather distinct 
demands placed upon the local processor, that of display 
generation and general computing, and because these two 
capabilities could run in parallel, it was further deter­
mined that the inclusion of two separate processors in the 
graphics station would be in order. In particular, the first 
of these processors would be of a general-purpose nature, 
while the second would be designed specifically for main­
tenance and regeneration of the display. Figure 2 illus­
trates the division of these processing capabilities. Unfor­
tunately, the configuration shown in Figure 2 was far 
removed in scope from any commercially available equip­
ment, and the purchasing of a general-purpose computer 
from one manufacturer, a graphics processor from anoth­
er, and perhaps even a display from a third would prove 
not only unworkable in terms of compatability, interfac­
ing, and programming, but also unadaptable to the imple­
mentation desired. It became apparent that it would be 
necessary to design the satellite system from the ground 
up. This could be accomplished by building the hardware 
at Brown; however, the lack of engineering manpower 
ruled out this possibility. The one other method that 
could be employed would be to purchase a pair of user-
microprogrammable host computers; a few such comput­
ers were available at the time. Microprogrammable 
computers provide the system designer with the hardware 
upon which he can base a novel system, presenting him 
with the opportunity, but also the problem, of writing 
software from the ground up, and with actually designing 
and implementing his own target architecture and 
instruction set. 

The problem of computing system architecture has 
been of major importance since the dawn of computers in 
the late 1940's. The computer user, however, has had lit­
tle or nothing to do with this problem; scientists and 
engineers at the manufacturing companies (or universi­
ties) have done all the design in seclusion. Once designed, 
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it was then up to salesmen to sell the machine to the 
unsuspecting public, which accepted it on faith or out of 
necessity. 

Over the last ten years things have begun to change. 
People have realized that their applications, be they 
business data processing, process control, or bio-medical 
research, are distinct and have peculiar computational 
requirements. The advent of the reasonably cheap mini­
computer has allowed users to program their own monitor 
systems and software packages, oriented toward their 
specific needs. Regardless, the target architecture of these 
machines was still fixed and unchangeable, and could not 
be tailored to a user's specific needs in order to increase 
effectiveness. However, this latter problem is now being 
alleviated by the introduction of user-microprogram-
mable host computers. The purpose of such computers is 
to allow the user himself to design an appropriate target 
architecture and instruction set for this particular appli­
cation, implement this architecture, and perhaps change 
it after he has learned more about what he needs. A good 
overview of microprogramming in general is found in 
Reference 16. Microprogramming trade-offs for user 
applications are discussed in Reference 5. 

It is at this point that a clear distinction between a 
target architecture and a target instruction set must be 
made. The architecture defines the basic relationships 
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between the various components of the machine, e.g., 
storage, registers, control, arithmetic units, etc. On the 
other hand, the instruction set is simply the array of dis­
crete operations which may be utilized by the program­
mer. A specific example is the comparison of the Bur­
roughs family of stack machines3 and the IBM S/360 
family.9 The target architectures are entirely different, 
whereas the instruction sets are similar. 

The purpose of this paper is to discuss the problems of 
machine architecture and instruction set design in gen­
eral, while referring to the specific BUGS implementation. 
Based on this discussion, a set of ideas and suggestions is 
presented to form an initial guide for future implementers 
of microprogrammed machine architectures. 

CHOOSING A MICROPROGRAMMABLE HOST 
COMPUTER 

As stated in the Introduction, much of the rigidity of 
conventional computers can be overcome if the user is 
willing to microprogram his own target architecture and 
instruction set. Although it has been said too many times 
already, it remains necessary to point out that the aura of 
complexity surrounding microprogramming is purely a 
product of scientific mysticism. Microprogramming is not 
much more than fairly conventional programming at a 
different level, perhaps requiring greater attention to effi­
ciency;12 anyone who has coded a simulator or inter­
preter has already programmed at that level. Micropro­
gramming therefore, being programming at a lower 
level, transforms the problem of rigidity of the target 
level architecture into the lower-level problem of host 
architecture rigidity. After all, how can one design a 
24-bit target architecture if he knows it will be imple­
mented on a 16-bit host? And one might as well give up 
if a decimal machine is desired without decimal hard­
ware in the host. Such conflicting features are not 
impossible to implement, but they will be extremely 
inefficient and difficult to microprogram. 

At the time the microprogrammable hosts for BUGS' 
were chosen, there were none available that were suffi­
ciently adaptable to allow a wide choice of target archi­
tectures. In other words, the rigidity of the host architec­
ture limited the range of target architectures almost 
entirely to the standard Von Neumann variety. Most 
users would not consider this limitation a hindrance; they 
are used to standard architectures and would be at a loss 
to design an alternate one. However, it is becoming more 
and more apparent that the barriers to increasing compu­
tational effectiveness today are a factor not so much of 
the crudity of the instruction set as of the unyielding 
nature of unadaptable hardware. Even the simplest 
instruction set can simulate a Turing machine and hence 
compute any function, but the ease with which these 
functions can be performed depends on the overall blend 
of machine facilities. Burroughs has begun an attempt at 
solving the rigidity problem with the introduction of the 
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B1700 variable-micrologic processor,23 which takes a first 
step toward eliminating certain inherently structured 
components. However, the B1700 cannot as yet be consid­
ered an inexpensive user-microprogrammable computer. 

All in all, there were four hosts from which to choose, 
including the Interdata Model 4U Microdata 80013 Digital 
Scientific META 4,6 and the Nanodata QM-1.15 It is 
immediately apparent that the machines vary widely in 
architecture. Our consideration was narrowed down very 
quickly by the fact that the Interdata and Microdata 
machines have two major deficiencies. The first is the 8-
bit microregisters, which would prove horribly inefficient 
for implementing the 16- or 32-bit arithmetic required for 
even basic numerical computing. Two or four registers 
would be required per operand, and multiple-precision 
arithmetic would have to be performed. The second defi­
ciency is the unavailability of on-site user microprogram­
ming (let alone writeable control storage), making experi­
mentation and redesign virtually impossible. For these 
two reasons the choice was narrowed down to the META 
4 and the QM-1. 

The QM-1 had two major features in its favor. The first 
was the abundance of microregisters and large amount of 
storage, while the second is that of writeable control stor­
age. However, it appeared that the machine would not be 
available for many months, whereas the META 4 was 
immediately deliverable. Furthermore, the impressive 
control cycle speed of the META 4 was enticing. On these 
grounds it was decided to purchase two META 4's, the 
first of which would be the general-purpose processor 
called the "META 4A"2 and the second the graphics 
processor called the "META 4B."19 

DESIGNING A TARGET ARCHITECTURE 

Designing a target architecture should not have to be a 
major research effort. Unfortunately, however, there is a 
plethora of considerations which will greatly affect the 
ultimate usefulness of any design, and yet there are no 
available guidelines to help cope with them. If these con­
siderations are not dealt with and ultimately synthesized 
in a reasonable manner, the architecture may fail to be of 
any use whatsoever. 

At first glance, the most important consideration may 
appear to be the application for which the architecture is 
intended. Although every application requires certain 
basic computational capabilities, the strength of a specific 
architecture lies in its ability to simplify the problems at 
hand. For example, process control requires a fast and 
flexible interrupt handling mechanism, whereas informa­
tion retrieval necessitates powerful data structure manip­
ulation operations. So it might well be concluded that an 
optimal architecture contains basic arithmetic, logical, 
and decision-making tools plus facilities oriented toward 
the ultimate application(s). 

The above assumption should be examined at a lower 
level. Suppose there is a machine with an instruction (call 

it SEARCH) which scans a linked list for an entry with a 
specific key. Such an instruction is immensely useful for 
operating systems with queue-searching requirements, for 
information retrieval, or for computer graphics. Consider 
now the level of programming available for the machine. 
If programmers are coding in assembly language, the 
instruction can probably be utilized; the determination of 
when it can be used is up to the programmer. However, if 
a higher-level language is available, it may be impossible 
for even a very sophisticated compiler to determine when 
such an instruction can be generated without an explicit 
SEARCH primitive, because the fact that the program­
mer is performing a queue search is hidden in a four or 
five statement loop. A vast amount of research concerning 
the relationship between compilers and instruction sets 
has yet to be conducted. 

The SEARCH difficulty is only indicative of a basic 
contradictory aim in the current design of computers. In 
most cases, the designers are thinking in terms of assem­
bly language programming, and hence produce an 
instruction set with an abundance of special-purpose 
operations that can be used only by a resourceful assem­
bly language programmer. As soon as the compiler 
designer begins considering the type of code his compiler 
is to generate, however, these instructions prove useless 
and perhaps cumbersome. 

So where does that leave us? It is at this point that the 
user must decide how much expertise he has available, 
how much time he is willing to devote, and how much 
money he has to spend. If he decides to bend over back­
wards, then he can purchase something like a B1700, 
spend time experimenting with the architecture design, 
and probably produce a fine target machine. Indeed, such 
a processor is a particularly convenient vehicle for tack­
ling the hardware-firmware-software problem,14 i.e., the 
problem of how to distribute the processing function 
between hardware, microprogram, and software for opti­
mal performance. Many users might complain that they 
have not the money nor desire to spend excessive time in 
the design of a system. In this case a somewhat narrower 
approach to a conventional architecture is in order, with 
perhaps only a few basic improvements. If the user 
chooses to go the B1700 route, then the conflict between 
assembly and high-level languages can be eliminated by 
maintaining multiple emulators, one for each language. 
However, most users will probably choose the more con­
ventional direction, in which case the problem still 
remains, and has a few solutions. If only assembly lan­
guage will be used, then there is no reason not to include 
SEARCH. The trend today, though, is toward higher-level 
languages, particularly with programmers becoming more 
enlightened to the successes of the structured program­
ming approach.3 7 The compiler designer can simply 
ignore the SEARCH instruction, or he can add a 
SEARCH statement to the language. If he chooses to 
ignore it, then its inclusion in the instruction set is ques­
tionable and must be reconsidered. In this manner, each 
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special-purpose feature of an architecture must be evalu­
ated separately to determine its ultimate usefulness. 

Another major consideration is that of the ultimate 
speed of the target machine. Most users might immedi­
ately say that "the faster it goes, the better I like it." 
Many applications indeed require such speed, particu­
larly real-time systems. Unfortunately, because of the 
aforementioned rigidity of host processors, it is impos­
sible for a user to reduce emulation time by putting 
often-used functions into the hardware. In the work at 
Brown it has been found that, because of this fact, the 
speed of the individual functions in a target machine 
varies directly with their complexity. A good example is 
that of memory addressing schemes. Simple absolute 
addressing is extremely fast, while base register-dis­
placement addressing is much slower. Add on an index 
register and an indirect flag and memory referencing 
will slow to the speed of cold molasses. The question 
that must be asked about each of these functions is: 
How much speed am I willing to trade off for useful com­
plexity? You may come to the conclusion that speed is 
all important. Then again, programming and compila­
tion ease may be the biggest factor, in which case a more 
powerful instruction set is desired. It must be kept in 
mind that the execution speed of a simple, fast archi­
tecture and a complex slower one may be equalized by 
the fact that the slowness of the latter is made up for by 
its more powerful instructions, i.e., the faster machine 
requires more instructions to perform the same function. 
This implies an advantage to choosing the latter archi­
tecture, since programs coded on it should be generally 
smaller than those coded on the other architecture (see 
the IBM 1130/META 4A benchmark in a later section 
for a specific example). 

One of the most probable misconceptions in evaluating 
speed requirements is that of determining how much 
computing per unit time is actually going to be done. If 
the application is input/output bound, or if it processes 
human requests, a somewhat slow CPU may go com­
pletely unnoticed. Another possibility is that of a multi­
processing system—upon consideration it may be deter­
mined that one processor can be slow and more complex 
even if the other needs to be fast. 

An unfortunate problem with most mic reprogrammable 
processors today is the very limited amount of control 
storage which can be included (one to four thousand 
words in most cases). Once a basic target instruction set is 
microprogrammed, there may be little space left for 
application-oriented or experimental facilities. As in all 
programming, the space/t ime tradeoff is thus present, 
requiring the speed and space considerations to be evalu­
ated in parallel. 

The above considerations lead directly to a related 
consideration, that of tuning the target architecture to fit 
the host computer. For reasons of speeding up the target 
machine and simplifying the microprogramming task, 
certain functions that the host machine does poorly 
should be avoided. One example is a host computer with­

out bit testing facilities; this suggests that a TEST BIT 
target instruction would be unwieldy. Another example is 
that of the word size of the target machine—it should 
optimally be the same as the host machine word size, and 
at worst a multiple thereof. The speed consideration is by 
far the most frustrating of all. It may require leaving out 
many features of the target machine that would otherwise 
be desirable, simply because they are uselessly slow or 
impossible to implement. It has also been shown that 
many functions may run almost as fast in the software as 
in the firmware,5 in which case, for the purpose of saving 
control storage or for making the function more easily 
changeable, they should not be microprogrammed. 

A final consideration is that of the human program­
ming factor. There may well arise a situation in which 
there are a handful of expert programmers trained on a 
specific machine, but it is decided for one reason or 
another to replace the machine with a microprogram-
mable processor. Certainly, if this new processor were to 
support a target architecture similar or identical to the 
original machine, the programmers would be doing useful 
work much sooner than if they had to be retrained. 
Furthermore, any existing software packages could be 
converted in much less time, a factor that may well prove 
to be the saving or the death of the conversion. Perhaps 
the new processor is to run as a satellite to a bigger com­
puter. In this case, programmers may be writing assem­
bly language code for both machines. If they had identi­
cal instruction sets, then these programmers' sanity could 
be preserved, whereas if they were somewhat different the 
programmers may not be able to switch machines with 
much alacrity. Furthermore, similarity between the two 
machines would allow compilers to be written which 
could produce optimized code for both machines using 
identical algorithms. 

The evaluation of all these interrelated considerations 
can add up to a staggeringly complex problem. Indeed, 
many decisions cannot be finalized until after the system 
is implemented and used for a while. If the host computer 
is equipped with writeable control storage, post-imple­
mentation decisions are no problem. However, most hosts 
available today do not have such control storage, so that 
the design must be fairly well finalized before it is imple­
mented. The best tool in this case is a good microcode 
simulator for the host, equipped with timing and debug­
ging features.24 Using the simulator, small applications 
programs and system software can be written in the target 
instruction set and tested. This simulation should turn up 
not only design and microprogramming errors, but also 
help determine the usefulness of experimental features 
and perhaps point out missing features. Uncountable 
hours of headaches can be saved in this way. 

The first design of the BUGS general-purpose processor 
(META 4A) began with what were thought to be fairly 
concrete decisions concerning the considerations dis­
cussed above: 

Application facilities. The intent of the META 4A design 
was to produce a general-purpose processor which could 
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support a variety of applications, the most important of 
which was graphics (keeping in mind that actual dis­
play regeneration was to be done with the META 4B). 
Therefore, complete data structure searching and 
manipulation operators, plus operators for manipulat­
ing arbitrary length character strings were included. In 
addition, requirements for communication with the 
IBM S/ 360-67 necessitated the inclusion of a micropro­
grammed interface between the META 4A and the 
IBM multiplexor channel, plus target instructions to 
control this communication. 

Programming languages. This area was of definite con­
cern in choosing the target instruction set. The ultimate 
goal was to use the LSD language for all programming, 
but, it would not be available for at least a year. Hence, 
for the interim, a powerful assembly language was 
needed, but it was necessary to think ahead and include 
facilities useful to a compiler. Unfortunately, the 
knowledge of just what these facilities should be was 
inadequate due to the fact that the compiler was only 
partially designed and partially implemented at the 
time. A limited set of instructions for procedure entry 
and exit were included, plus the idea of automatic stor­
age was formalized and included in the firmware. Fur­
thermore, it was decided to go ahead and include what­
ever instructions would be useful for assembly language 
programmers, and simply let the designers of LSD 
ignore them if they were of no use. 

Speed. Because the actual graphics display regeneration 
was to be done in the META 4B, it was felt that the 
speed of the META 4A was not as crucial as its power 
and flexibility. The overall philosophy was to derive as 
much speed as possible without deterring from produc­
ing a powerful and easy-to-use instruction set. 

Emulator size. The size of the emulator was limited to 
1500 microinstructions due to available funds. For this 
reason there was not much choice but to code so as to 
save control storage space at the expense of speed. 

Host considerations. The META 4 host seemed general 
enough so that any feature could be implemented; as it 
turned out, this was definitely not the case. Examples 
of the inadequacies that were discovered are discussed 
in the following section. 

Human factors. This, too, was a distinct problem. Pro­
grammers would be working on three separate proces­
sors (S/ 360-67, META 4A, and META 4B) in parallel, 
and therefore the idea that the local processors should 
look like S/360ss was a strong one. On the other hand, 
these programmers were also experienced on other 
processors and felt that working in two different envi­
ronments simultaneously would not be entirely out of 
the question. It was decided that architectural similar­
ity was of only secondary importance. 

A FIRST ATTEMPT 

The first design of the META 4A was begun by consid­
ering the great variety of computers already on the mar­

ket and classifying them into categories. The evaluation 
of these computers would allow a choice of a base archi­
tecture, which could then be improved and customized in 
light of the considerations outlined previously. The fol­
lowing basic architectures were considered: 

IBM 1130-like. This category is considered to be com­
posed of computers with relatively simple architectures 
that would be easy to implement and run efficiently on 
the META 4. Such things as simple addressing 
schemes, short instruction formats, and a small number 
of instructions would contribute toward this ease and 
efficiency. On the other hand, programming on such a 
machine would be slow and tedious, and there were no 
high-level facilities for use by the compiler designer. 
Furthermore, the integration of data structure and 
character manipulation features would be difficult, due 
to the lack of a sufficient variation of instruction for­
mats and too few operation codes. Experience with 
IBM 1130's, and the fact that the META 4 host was 
reasonably powerful, indicated that this was not the 
way to go. 

IBM S/360-like. In this category were computers with 
more complex architectures, offering the programmer 
more instructions and more power. Such an architec­
ture may include multiple target registers, general 
addressing schemes, and a wider range of application 
facilities, such as character manipulation, that make 
the programming problem simpler and smaller. How­
ever, with this power came complex instructions that 
require more time to emulate and more control storage 
to contain the emulator. One advantage to be gained by 
emulating an instruction set like that of the S/360 was 
the pre-existence of useful software such as assemblers 
and linkage editors. In a previous microprogramming 
project[V2], an S/360-like instruction set had been 
microprogrammed on an Interdata Model 3 with rea­
sonable success. 

DEC PDP-11-like. This category basically included only 
the PDP-11 family [D3]. It was considered separate and 
distinct simply because the PDP-11 contained a blend 
of features not found on other machines, such as stack 
operations and a highly flexible addressing mechanism. 
Instructions were generally variable in length, so that 
only necessary fields need be included—this was felt to 
be an advantage since the BUGS configuration had 
only 32K bytes of storage. Some considered the variable 
formats to be unnecessarily complex and confusing; one 
prospective user went so far as to state that he would 
refuse to code for the system if such an architecture 
were adopted. 

Stack machine. The final category was that of a stack 
architecture. Although such an architecture was ideal 
for high-level languages, it was difficult to program in 
assembly language. More importantly, such an archi­
tecture requires special hardware to make up for hav­
ing the stack in core (e.g., the A and B registers on the 
Burroughs machines,3 and without this hardware on the 
host, execution could be intolerably slow. 
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After evaluating the above architectures, the 1130-like 
architecture and the stack machine were ruled out for the 
reasons mentioned. At this point the decision became dif­
ficult, but the PDP-11-like architecture seemed to have a 
better blend of instruction power and size than the S/360-
like architecture. The fact that it was perhaps overly 
complex seemed somewhat irrelevant since those people 
who were to do the initial assembly language program­
ming were extremely experienced. For these reasons it 
was decided to go with the PDP-11-like architecture. The 
implementation of the PDP-11 architecture proceeded 
smoothly during the summer of 1971, until finally, when 
the bulk of the microprogramming was complete, timing 
measurements were made on the resulting emulator. It 
was discovered that a register/storage ADD instruction, 
requiring only three storage cycles (approximately three 
microseconds), took a total of 10 microseconds to execute. 
This time was considered to be completely inadequate. 

In retrospect, the bottleneck became glaringly appar­
ent. The instruction formats that had been adopted for 
this architecture consisted of many small fields (two or 
three bits) of information specifying such things as regis­
ter numbers, addressing modes, and operation codes. 
These fields had to be isolated into various microregisters 
in order to fetch the target registers, branch on the opera­
tion codes, and to perform other necessary functions. Not 
enough attention had been paid to the META 4 host to 
realize that such isolation would require many control 
cycles since the only shifting that could be performed was 
right and left shifts of one or eight bits. If a 3-bit field 
must be isolated from bits 8 - 10 of a 16-bit word, for 
example, five shifts of "right one" must be performed, 
requiring about half a microsecond on the META 4. Per­
forming such shifting many times in the course of a target 
instruction decreased the efficiency of the emulator dras­
tically. 

From the failure of this first design attempt came the 
knowledge that tailoring the target architecture to the 
host machine is of great importance and cannot be under­
estimated. As stated, the speed of the META 4A was not 
the most important factor, thus the slowness could per­
haps be justified by arguing that programs would be sig­
nificantly smaller with the PDP-11-like format than with 
the other architectures considered. To ascertain the valid­
ity of the justification, a set of benchmark programs was 
written using the PDP-11-like instruction set and a 
slightly modified S/360 set. Such programs as storage 
allocation routines, matrix inversion algorithms, and text 
processing functions indicated that not only did the S/360 
instruction set outperform the PDP-11 by a speed factor 
of two to one, but that the PDP-11 programs were never 
more than 10 percent smaller than the others. 

A SECOND ATTEMPT 

Once the PDP-11-like architecture was abandoned, the 
only remaining possibility indicated by the investigations 
outlined above was an S/360-like architecture. The pre­
vious microprogramming of an S/360 emulator had been 

done in order to investigate the properties of the META 4 
host, and this microprogramming indicated that S/360 
instruction formats would be relatively free of complex 
shifting operation and hence faster to decode as compared 
to the PDP-11 formats. Indeed, when the second micro­
programming task was finished, it was found that an 
equivalent ADD instruction took only 4.5 microseconds, 
as compared to the 10 for the PDP-11-like set; this was 
considered a satisfactory improvement, particularly in 
light of the small difference in program size. 

The final implementation of the META 4A general -
purpose processor, although S/360-like in nature, has 
many major departures from the actual S/360. In terms 
of architecture it is almost identical, except for the fact 
that the major numeric data type is the 16-bit (halfword) 
integer rather than the 32-bit (fullword) integer, due to 
the fact that the META 4 host has 16-bit registers. The 
two features omitted were the decimal data type, as this 
was considered unnecessary, and the floating-point data 
type. Floating-point is not included for two reasons. The 
first is that it is extremely difficult to implement in 
microcode without any hardware assistance; the resulting 
instructions would be extremely slow and consume a 
tremendous amount of precious control storage. The 
second reason is that any large amount of floating-point 
processing could be performed in the S/ 360-67 and the 
results transferred across the multiplexor channel to the 
META 4A. The META 4A has 16 target registers, imple­
mented using 16 of the META 4 host's 32 registers, and 
instruction formats identical to those of the S/360. In 
terms of instruction set, however, it has many improve­
ments over a S/360. 

(1) The instruction address register, or Program 
Counter (PC) as it is called on the META 4A, is 
actually target register 1. This feature allows more 
complex branching techniques, such as can be 
obtained by performing an addition into the PC, or 
by loading an address from storage into the PC. 
Although this is a powerful facility, it does add to 
the inscrutability of the user's program logic. More 
importantly, as long as all local data is placed 
beyond any instructions which refer to it, the PC 
can be used as the program base register, thus 
freeing another precious general-purpose target 
register from this function. 

(2). If the Pc is used as the program base register, it is 
impossible for an instruction to perform a back­
wards reference. This is no problem for data refer­
ences, but branch instructions must be capable of 
diverting control to a previous instruction. For this 
reason, the format of the branching instructions 
has been changed from including a base-displace­
ment address to including simply a signed displace­
ment considered relative to the PC. Not only does 
this alleviate the backward branch problem, but it 
makes the decoding of branch instructions much 
faster, since a base-displacement address, requiring 
a register number isolation, fetch, and addition. 
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does not have to be performed. Branch instructions 
on the META 4A execute faster than those on an 
S/360-50! 

(3) A new instruction format, called Register-Immedi­
ate (RI) format, has been added to the instruction 
repertoire. This format allows the programmer to 
perform the most common arithmetic and logical 
instructions using a register and an immediate 
halfword as the operands, thus saving both a base-
displacement calculation and the halfword of stor­
age that would be required for the remote constant. 
This proves to be a major factor in making most 
META 4A programs smaller than the equivalent 
S/360 programs. Additionally, the RI format 
instructions execute anywhere from one to two 
microseconds faster than the equivalent register/ 
storage instructions. 

(4) Instructions are provided which operate upon arbi­
trary length character strings. With these instruc­
tions the programmer can assign, compare, scan, 
translate, and initialize character string u p t o 64K 
bytes in length. 

(5) SEARCH, ENQ, and DEQ instructions are pro­
vided for manipulating linked lists and tables. The 
SEARCH instruction can scan a table or a linked 
list for an arbitrary length key anywhere in its 
members which is a logical function of an argument 
key. If an entry satisfying the function is found, a 
register is set to point to it. Once a SEARCH is 
performed on a linked list with DEQ, the satisfying 
entry can be deleted from the list, or a new entry 
can be added following it with ENQ. These instruc­
tions have proven invaluable time and space savers 
for implementing queue searches in the BUGS 
operating system.17 Such queues as the free stor­
age queue, dispatch queue, and the interrupt exit 
queue, are searched and maintained by these three 
instructions. Unfortunately, they will not be gener­
ated by the LSD compiler, except perhaps via an 
explicit primitive. 

(6) One interesting architectural experiment which was 
performed was to include a set of crude stack 
manipulation instructions, allowing the program­
mer to set up an arbitrary size stack and then push 
and pop information into and from it. The point of 
such an experiment was to learn whether or not 
programmers who were not experienced with a 
stack machine could learn to make use of such 
facilities, e.g., for expression evaluation. To date, 
no BUGS software has utilized the stack instruc­
tions. 

(7) Two instructions, ENTER and RETURN, exist in 
order to simplify, and particularly to speed up, the 
subprocedure entry and exit protocol. Each proce­
dure has associated with it a Stack Frame area, 
which contains a register save area and an arbi­
trary amount of automatic storage. These Stack 
Frame areas are maintained by the META 4A 

operating system. Experimentation with the format 
and content of these areas is continuing today.17 

(8) Special facilities were included in the firmware to 
support the addition of Extended instructions. An 
Extended instruction is an instruction which has an 
operation code not recognized by the firmware, but 
which has special meaning to the operating system. 
When such an instruction is executed, the firmware 
stores the parsed instruction into a special area in 
storage, and causes a target-level interrupt. At this 
point the operating system can simulate any func­
tion desired and then return control to the pro­
gram. Such a facility has proven invaluable for 
testing a new instruction before it is placed in the 
firmware, and for use as a communication method 
between user programs and the operating system 
software. 

In addition to the major points listed above, a great 
number of miscellaneous instructions have been added to 
the standard S/360 repertoire in order to fill out what 
were considered "gaps" in the instruction set. This 
included such things as storage to storage arithmetic, 
more address manipulation features, and indirect 
addressing on certain instructions. Although these 
instructions are sometimes used and can help decrease 
the size of a program, they also tend to add to the diffi­
culty of learning and digesting the instruction set. In par­
ticular, they increase the number of ways in which a 
problem can be coded and make it extremely difficult to 
select the most optimal algorithms. The question which 
remains, and which is currently being investigated, is just 
how much it is worth adding facilities which, although 
they may cut the size of a program by 5 percent, clutter 
up the instruction set and use up control storage. In addi­
tion, although these instructions were added to fill gaps in 
the S/360 repertoire, they have introduced their own 
gaps. An example is the addition of address manipulation 
instructions. Such an addition suggests that perhaps the 
address should be recognized as a valid data type, just as 
an integer is, and a full address manipulation instruction 
subset should be added. The META 4A does not have 
such a full subset, so that a new gap is introduced. Simi­
larly, many a META 4A programmer has been heard to 
mutter such things as "if I can add two halfwords in stor­
age, why can't I OR two halfwords?" 

Another problem with the addition of " random" 
instructions is exemplified in an instruction by instruc­
tion analysis of the code to be generated by the LSD 
compiler. A full third of the META 4A instruction set is 
never utilized by the compiler; once the programming 
load is shifted over to LSD, these instructions will become 
virtually useless. The control storage taken up by them 
could probably be put to a much better use. 

The BUGS system has been in standalone production 
use since August 1972, primarily for research into N-
dimensional mathematics. The performance of the 
META 4A has proven to be rather impressive. Based on 
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the applications programs written so far, a typical META 
4A program is between 3/4 and 2/3 the size of the equiva­
lent S/360 program. Furthermore, the speed of execution 
of these programs (using halfword operands) lies some­
where in between the speed of an S/ 360-40 and an S/360-
50, which is extremely pleasing considering the cost ra­
tio between the META 4 host (about $30,000) and an 
S/360. 

One interesting benchmark was a comparison of the 
IBM 1130 emulator supplied with the META 4 host 
(which is twice as fast as an actual 2.2 microsecond IBM 
1130) and the META 4A emulator. A version of the 
META 4 simulator used for debugging microprograms1 

was written for both of these target machines and com­
pared. The comparisons showed that the simulation speed 
of these two programs were indistinguishable. However, 
the META 4A version is 1/3 the size of the 1130 version, 
due primarily to the lack of character manipulation on 
the 1130. 

In light of the above benchmarks and hand simulations 
of test algorithms written for the Data General NOVA 
and DEC PDP-11 series, it appears that arbitrary algo­
rithms typically do not run appreciably slower and do use 
less storage on the META 4A, while algorithms that take 
advantage of the special purpose instruction on the 
META 4A both run considerably faster and use consider­
ably less storage. 

CONCLUSION—A RATIONAL APPROACH VIA 
FORMALIZATION 

Although an initial framework around which a user can 
design and implement his own target machine has been 
built, there is nothing to prevent this design from being ad 
hoc. Indeed, in light of the many considerations which 
must be synthesized, an ad hoc design is inevitable. It has 
been shown that an architecture can be both an improve­
ment over previous architectures and reasonably efficient 
while still being disorganized and incomplete. Such defi­
ciencies cause the assembly language programmer many 
headaches in terms of choosing algorithms, optimizing 
code, and generally writing programs. Furthermore, if the 
choice of target instructions is disorganized, many 
instructions will be included which are minimally useful 
to the assembly language programmer and useless to the 
compiler designer, simply because a far-fetched use of the 
instruction was envisioned by one of the members of the 
design team. An interesting example of this is the LXB 
instruction on the META 4A, which reads a 16-bit half-
word from storage and loads it into a register after 
exchanging the two bytes. This instruction was included 
for no other reason than the META 4 host machine had a 
byte swapping facility. It should be obvious that LXB has 
rarely if ever been used. All in all, the ad hoc architecture 
is due to a random combination of features useful to the 
application, features easily adaptable to the host, and 
features useful to the programmer. 

How can such architectures be eliminated? A look at 
many of the high-level languages in use today, particu­

larly PL/1 , will reveal a general philosophy that deals 
with the problem. In PL/1 , there is a well-defined set of 
data types and a well-defined set of operators, and any 
combination of these data types and operators is defined, 
except where meaningless. If such a formalization is 
adopted, it becomes easier to choose the statements neces­
sary for each individual step of a program, and reduces 
the obscurity which results when "unnatural" statements 
are required. Furthermore, it reduces the tendency 
toward operators and data types which are added for 
special cases and hence do not fit into the overall lan­
guage scheme. There is no reason why this same formali­
zation cannot be applied at the lower level of target ma­
chine instruction sets. Since the average program is con­
cerned chiefly with data manipulation, as opposed to I /O 
or interrupt handling, a formalization of the data manip­
ulation facilities of the machine would have major 
impact. 

The most apparent programming benefit of such for­
malization would be to the compiler designer. In order for 
him to allow the aforementioned generality to a program­
ming language on most current machines, he must gener­
ate unnatural code which performs the operations indi­
cated by the programmer. This code could be eliminated 
if the operations were made natural by allowing them to 
be performed directly by single instructions. The Bur­
roughs family of stack machines has adopted just such a 
philosophy and the results are well known: ALGOL 
compilers which can generate efficient code at an incredi­
bly high rate. In addition, the assembly language pro­
grammer gets an equivalent benefit in that he can code 
the individual steps of an algorithm in a more straightfor­
ward manner, without regard to such irrelevant consider­
ations as whether an operand is in storage or in a register 
or whether a character string is longer than 256 charac­
ters. Programs coded in such an environment should be 
shorter, more free of errors, and easier to modify in the 
future. 

The programming benefit gained from formalizing a 
proposed architecture is not the most important one, 
however. The purpose of this paper has been to outline a 
set of considerations which the target computer designer 
must keep in mind when creating a new machine. If the 
design is approached in a haphazard fashion, the designer 
will have perhaps 100 or 150 assorted features and 
instructions about which he must ask such questions as 
"are they useful to the application?", "how useable will 
they be by assembly and high-level language 
programmers?", and "will the host machine support them 
efficiently?" Such an overwhelming number of questions 
may be impossible to answer, particularly when the inter­
relationships between the operations is unclear. By for­
malizing this machine, the synthesis of these considera­
tions can be made simpler and more productive. The 
designer need only answer these questions about perhaps 
twenty operations and five data types, a much smaller 
task. If these features are proven to be useful and effi­
cient, then the designer can feel assured that the final 
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implementations of the instruction to perform the opera­
tions will be useful and efficient. 

Current research at Brown is attempting to deal with 
the formalization question. An analysis of the use of the 
current META 4A instruction set is being performed via 
modifications to the firmware with the hope of deter­
mining instruction and instruction sequence character­
istics and applying these characteristics to a determina­
tion of an optimal instruction set. A formalized archi­
tecture will then be designed, experimentally imple­
mented, and an evaluation made of the improvement in 
program coding ease, speed, size, etc. Once this is done, 
a more detailed guide to computer design and imple­
mentation can be written. 

REFERENCES 

1. Anagnostopoulos, P. C, META 4 Simulator Users' Guide, Brown 
University, Center for Computer and Information Sciences Tech­
nical Report. 

2. Anagnostopoulos, P. C, Sockut, G. H., META 4A Principles of 
Operation, Brown University, Center for Computer and Informa­
tion Sciences Technical Report. 

3. B6500 Reference Manual, Burroughs Corp., 1969. 
4. Baker, F. T., "System Quality through Structured Programming," 

AFIPS Conference Proceedings, Volume 41, Part 1,1972. 
5. Clapp, J. A., "The Application of Microprogramming Technology," 

ACM SIGMICRO Newsletter, April 1972. 
6. META 4 Computer System Reference Manual, Digital Scientific 

Corporation, May 1971. 
7. Dijkstra, E. W., Notes on Structured Programming, Technische 

Hogeschool, Eindhoven, 1969. 
8. PDP-11 Processor Handbook, Digital Equipment Corp., 1971. 

9. System/360 Principles of Operation, International Business Mach­
ines Corp., 1968. 

10. CP-67/CMS User's Guide, International Business Machines Corp., 
1971. 

11. Model 4 Micro-instruction Reference Manual, Interdata Corp., 
1968. 

12. Kleir and Ramanoorthy, "Optimization Techniques for Micropro­
grams," IEEE Transactions on Computers, July 1971. 

13. Microprogramming Handbook, Microdata Corp., 1971. 
14. Mandell, R. L., "Hardware/software trade-offs - Reasons and 

directions," AFIPS Conference Proceedings, Volume 41, Part I, 
1972. 

15. QM-1 Hardware Level User's Manual, Nanodata Corp., June 1972. 
16. Rosin, R. F., "Contemporary Concepts of Microprogramming and 

Emulation," ACM Computing Surveys, Volume I, December 1969. 
17. Stockenberg, J. E., Anagnostopoulos, P. C , Johnson, R. E., 

Munck, R. G., Stabler, G. M., van Dam, A., "Operating System 
Design Considerations for Microprogrammed Mini-computer Sat­
ellite Systems," Proceedings of the National Computer Conference 
and Exposition, June 1973. . 

18. Stabler, G. M., Brown University, Graphics System Overview, 
Brown University Center for Computer and Information Sciences 
Technical Report. 

19. Stabler, G. M., META 4B Principles of Operation, Brown Univer­
sity, Center for Computer and Information Sciences Technical 
Report. 

20. van Dam, A., "Microprogramming for Computer Graphics," ACM 
SIGMICRO Newsletter, April 1972. 

21. van Dam, A., Schiller, W. L., Abraham, R. L., Fox, R. M., "A 
Microprogrammed Intelligent Graphics Terminal," IEEE Transac­
tions on Computers, July 1971. 

22. van Dam, A., Bergeron, D., Gannon, J., Shecter, D., Tompa, F., 
"Systems Programming Language," Advances in Computer, Vol­
ume 12, Academic Press, Oct. 1972. 

23. Wilner, W. T., "Design of the Burroughs B1700," AFIPS Confer­
ence Proceedings, Volume 41, Part I, December 1972. 

24. Young, S., "A Microprogram Simulator," ACM SIGMICRO News­
letter, October 1971. 






