
Computer architecture anc

by P . C. ANAGNOSTOPOULOS, M. J. MICHEL, G.

Brown University
Providence, Rhode Island

INTRODUCTION

A group of computer scientists and mathematicians at
Brown University has been engaged in the study of
computer graphics for the past eight years. During the
course of these studies a variety of topics has been inves­
tigated, in particular, during the last few years, the use of
microprogramming for implementing graphics sys­
tems.2021' In early 1971, Professor Andries van Dam and
his associates submitted a threefold research proposal to
the National Science Foundation. The problems to be
investigated were:

(1). Inter-Connected Processing (ICP-ing) between a
central computer and an associated satellite proces­
sor, with the goal of a dynamically alterable solu­
tion to the "division of labor" problem; program
modules would be dynamically linked in either
machine as a function of availability and cost of
resources and response time;

(2) Programming aids at the source language level for
the automatic generation of data structure manipu­
lation subroutines and symbolic debugging of data
structure oriented applications programs;

(3) The development and use of the Language for Sys­
tems Development (LSD),22 a high-level systems
programming language, for generating the applica­
tions and systems software for both the central
computer and the satellite in such systems:

An interactive graphics system is an excellent paradigm
for such investigations since graphics applications.

(1) are typically very large in terms of memory space
required;

(2) maintain large data bases, many with intricate
(list-processing oriented) data structures;

(3) have processing requirements that change dynami­
cally, varying from very heavy (e.g., structural
analyses of a bridge) to very light (e.g., inputting a
command); and

(4) require real-time response.

* This work is sponsored in part by the National Science Foundation,
grant GJ-28401X, the Office of Naval Research, contract N000-14-67-A-
0191-0023, and the Brown University Division of Applied Mathematics.

instruction set design*

. SOCKUT, G. M. STABLER, and A. van DAM

The Brown University Graphics System (BUGS)1* was
designed as the vehicle for performing this research. Prin­
cipally, the configuration consists of an IBM S/360-67
running the CP-67/CMS time-sharing system,10 used by
the entire Brown University community, and a satellite
display station, as illustrated in Figure 1. This reasonably
powerful satellite configuration provides such facilities as
program editing and compilation, debugging tools, and
most importantly, application processing power and data
storage. However, because of the two rather distinct
demands placed upon the local processor, that of display
generation and general computing, and because these two
capabilities could run in parallel, it was further deter­
mined that the inclusion of two separate processors in the
graphics station would be in order. In particular, the first
of these processors would be of a general-purpose nature,
while the second would be designed specifically for main­
tenance and regeneration of the display. Figure 2 illus­
trates the division of these processing capabilities. Unfor­
tunately, the configuration shown in Figure 2 was far
removed in scope from any commercially available equip­
ment, and the purchasing of a general-purpose computer
from one manufacturer, a graphics processor from anoth­
er, and perhaps even a display from a third would prove
not only unworkable in terms of compatability, interfac­
ing, and programming, but also unadaptable to the imple­
mentation desired. It became apparent that it would be
necessary to design the satellite system from the ground
up. This could be accomplished by building the hardware
at Brown; however, the lack of engineering manpower
ruled out this possibility. The one other method that
could be employed would be to purchase a pair of user-
microprogrammable host computers; a few such comput­
ers were available at the time. Microprogrammable
computers provide the system designer with the hardware
upon which he can base a novel system, presenting him
with the opportunity, but also the problem, of writing
software from the ground up, and with actually designing
and implementing his own target architecture and
instruction set.

The problem of computing system architecture has
been of major importance since the dawn of computers in
the late 1940's. The computer user, however, has had lit­
tle or nothing to do with this problem; scientists and
engineers at the manufacturing companies (or universi­
ties) have done all the design in seclusion. Once designed,

519

520 National Computer Conference, 1973

S/360-67

LOCAL

PROCESSOR

GRAPHICS
SCOPE

MEMORY

(32K)

Figure 1

it was then up to salesmen to sell the machine to the
unsuspecting public, which accepted it on faith or out of
necessity.

Over the last ten years things have begun to change.
People have realized that their applications, be they
business data processing, process control, or bio-medical
research, are distinct and have peculiar computational
requirements. The advent of the reasonably cheap mini­
computer has allowed users to program their own monitor
systems and software packages, oriented toward their
specific needs. Regardless, the target architecture of these
machines was still fixed and unchangeable, and could not
be tailored to a user's specific needs in order to increase
effectiveness. However, this latter problem is now being
alleviated by the introduction of user-microprogram-
mable host computers. The purpose of such computers is
to allow the user himself to design an appropriate target
architecture and instruction set for this particular appli­
cation, implement this architecture, and perhaps change
it after he has learned more about what he needs. A good
overview of microprogramming in general is found in
Reference 16. Microprogramming trade-offs for user
applications are discussed in Reference 5.

It is at this point that a clear distinction between a
target architecture and a target instruction set must be
made. The architecture defines the basic relationships

S/360-67

GENERAL-
PURPOSE

PROCESSOR

DISK

READER

CONSOLE

DISPLAY

PROCESSOR

GRAPHICS
SCOPE

Figure 2

between the various components of the machine, e.g.,
storage, registers, control, arithmetic units, etc. On the
other hand, the instruction set is simply the array of dis­
crete operations which may be utilized by the program­
mer. A specific example is the comparison of the Bur­
roughs family of stack machines3 and the IBM S/360
family.9 The target architectures are entirely different,
whereas the instruction sets are similar.

The purpose of this paper is to discuss the problems of
machine architecture and instruction set design in gen­
eral, while referring to the specific BUGS implementation.
Based on this discussion, a set of ideas and suggestions is
presented to form an initial guide for future implementers
of microprogrammed machine architectures.

CHOOSING A MICROPROGRAMMABLE HOST
COMPUTER

As stated in the Introduction, much of the rigidity of
conventional computers can be overcome if the user is
willing to microprogram his own target architecture and
instruction set. Although it has been said too many times
already, it remains necessary to point out that the aura of
complexity surrounding microprogramming is purely a
product of scientific mysticism. Microprogramming is not
much more than fairly conventional programming at a
different level, perhaps requiring greater attention to effi­
ciency;12 anyone who has coded a simulator or inter­
preter has already programmed at that level. Micropro­
gramming therefore, being programming at a lower
level, transforms the problem of rigidity of the target
level architecture into the lower-level problem of host
architecture rigidity. After all, how can one design a
24-bit target architecture if he knows it will be imple­
mented on a 16-bit host? And one might as well give up
if a decimal machine is desired without decimal hard­
ware in the host. Such conflicting features are not
impossible to implement, but they will be extremely
inefficient and difficult to microprogram.

At the time the microprogrammable hosts for BUGS'
were chosen, there were none available that were suffi­
ciently adaptable to allow a wide choice of target archi­
tectures. In other words, the rigidity of the host architec­
ture limited the range of target architectures almost
entirely to the standard Von Neumann variety. Most
users would not consider this limitation a hindrance; they
are used to standard architectures and would be at a loss
to design an alternate one. However, it is becoming more
and more apparent that the barriers to increasing compu­
tational effectiveness today are a factor not so much of
the crudity of the instruction set as of the unyielding
nature of unadaptable hardware. Even the simplest
instruction set can simulate a Turing machine and hence
compute any function, but the ease with which these
functions can be performed depends on the overall blend
of machine facilities. Burroughs has begun an attempt at
solving the rigidity problem with the introduction of the

Computer Architecture and Instruction Set Design 521

B1700 variable-micrologic processor,23 which takes a first
step toward eliminating certain inherently structured
components. However, the B1700 cannot as yet be consid­
ered an inexpensive user-microprogrammable computer.

All in all, there were four hosts from which to choose,
including the Interdata Model 4U Microdata 80013 Digital
Scientific META 4,6 and the Nanodata QM-1.15 It is
immediately apparent that the machines vary widely in
architecture. Our consideration was narrowed down very
quickly by the fact that the Interdata and Microdata
machines have two major deficiencies. The first is the 8-
bit microregisters, which would prove horribly inefficient
for implementing the 16- or 32-bit arithmetic required for
even basic numerical computing. Two or four registers
would be required per operand, and multiple-precision
arithmetic would have to be performed. The second defi­
ciency is the unavailability of on-site user microprogram­
ming (let alone writeable control storage), making experi­
mentation and redesign virtually impossible. For these
two reasons the choice was narrowed down to the META
4 and the QM-1.

The QM-1 had two major features in its favor. The first
was the abundance of microregisters and large amount of
storage, while the second is that of writeable control stor­
age. However, it appeared that the machine would not be
available for many months, whereas the META 4 was
immediately deliverable. Furthermore, the impressive
control cycle speed of the META 4 was enticing. On these
grounds it was decided to purchase two META 4's, the
first of which would be the general-purpose processor
called the "META 4A"2 and the second the graphics
processor called the "META 4B."19

DESIGNING A TARGET ARCHITECTURE

Designing a target architecture should not have to be a
major research effort. Unfortunately, however, there is a
plethora of considerations which will greatly affect the
ultimate usefulness of any design, and yet there are no
available guidelines to help cope with them. If these con­
siderations are not dealt with and ultimately synthesized
in a reasonable manner, the architecture may fail to be of
any use whatsoever.

At first glance, the most important consideration may
appear to be the application for which the architecture is
intended. Although every application requires certain
basic computational capabilities, the strength of a specific
architecture lies in its ability to simplify the problems at
hand. For example, process control requires a fast and
flexible interrupt handling mechanism, whereas informa­
tion retrieval necessitates powerful data structure manip­
ulation operations. So it might well be concluded that an
optimal architecture contains basic arithmetic, logical,
and decision-making tools plus facilities oriented toward
the ultimate application(s).

The above assumption should be examined at a lower
level. Suppose there is a machine with an instruction (call

it SEARCH) which scans a linked list for an entry with a
specific key. Such an instruction is immensely useful for
operating systems with queue-searching requirements, for
information retrieval, or for computer graphics. Consider
now the level of programming available for the machine.
If programmers are coding in assembly language, the
instruction can probably be utilized; the determination of
when it can be used is up to the programmer. However, if
a higher-level language is available, it may be impossible
for even a very sophisticated compiler to determine when
such an instruction can be generated without an explicit
SEARCH primitive, because the fact that the program­
mer is performing a queue search is hidden in a four or
five statement loop. A vast amount of research concerning
the relationship between compilers and instruction sets
has yet to be conducted.

The SEARCH difficulty is only indicative of a basic
contradictory aim in the current design of computers. In
most cases, the designers are thinking in terms of assem­
bly language programming, and hence produce an
instruction set with an abundance of special-purpose
operations that can be used only by a resourceful assem­
bly language programmer. As soon as the compiler
designer begins considering the type of code his compiler
is to generate, however, these instructions prove useless
and perhaps cumbersome.

So where does that leave us? It is at this point that the
user must decide how much expertise he has available,
how much time he is willing to devote, and how much
money he has to spend. If he decides to bend over back­
wards, then he can purchase something like a B1700,
spend time experimenting with the architecture design,
and probably produce a fine target machine. Indeed, such
a processor is a particularly convenient vehicle for tack­
ling the hardware-firmware-software problem,14 i.e., the
problem of how to distribute the processing function
between hardware, microprogram, and software for opti­
mal performance. Many users might complain that they
have not the money nor desire to spend excessive time in
the design of a system. In this case a somewhat narrower
approach to a conventional architecture is in order, with
perhaps only a few basic improvements. If the user
chooses to go the B1700 route, then the conflict between
assembly and high-level languages can be eliminated by
maintaining multiple emulators, one for each language.
However, most users will probably choose the more con­
ventional direction, in which case the problem still
remains, and has a few solutions. If only assembly lan­
guage will be used, then there is no reason not to include
SEARCH. The trend today, though, is toward higher-level
languages, particularly with programmers becoming more
enlightened to the successes of the structured program­
ming approach.3 7 The compiler designer can simply
ignore the SEARCH instruction, or he can add a
SEARCH statement to the language. If he chooses to
ignore it, then its inclusion in the instruction set is ques­
tionable and must be reconsidered. In this manner, each

522 National Computer Conference, 1973

special-purpose feature of an architecture must be evalu­
ated separately to determine its ultimate usefulness.

Another major consideration is that of the ultimate
speed of the target machine. Most users might immedi­
ately say that "the faster it goes, the better I like it."
Many applications indeed require such speed, particu­
larly real-time systems. Unfortunately, because of the
aforementioned rigidity of host processors, it is impos­
sible for a user to reduce emulation time by putting
often-used functions into the hardware. In the work at
Brown it has been found that, because of this fact, the
speed of the individual functions in a target machine
varies directly with their complexity. A good example is
that of memory addressing schemes. Simple absolute
addressing is extremely fast, while base register-dis­
placement addressing is much slower. Add on an index
register and an indirect flag and memory referencing
will slow to the speed of cold molasses. The question
that must be asked about each of these functions is:
How much speed am I willing to trade off for useful com­
plexity? You may come to the conclusion that speed is
all important. Then again, programming and compila­
tion ease may be the biggest factor, in which case a more
powerful instruction set is desired. It must be kept in
mind that the execution speed of a simple, fast archi­
tecture and a complex slower one may be equalized by
the fact that the slowness of the latter is made up for by
its more powerful instructions, i.e., the faster machine
requires more instructions to perform the same function.
This implies an advantage to choosing the latter archi­
tecture, since programs coded on it should be generally
smaller than those coded on the other architecture (see
the IBM 1130/META 4A benchmark in a later section
for a specific example).

One of the most probable misconceptions in evaluating
speed requirements is that of determining how much
computing per unit time is actually going to be done. If
the application is input/output bound, or if it processes
human requests, a somewhat slow CPU may go com­
pletely unnoticed. Another possibility is that of a multi­
processing system—upon consideration it may be deter­
mined that one processor can be slow and more complex
even if the other needs to be fast.

An unfortunate problem with most mic reprogrammable
processors today is the very limited amount of control
storage which can be included (one to four thousand
words in most cases). Once a basic target instruction set is
microprogrammed, there may be little space left for
application-oriented or experimental facilities. As in all
programming, the space/t ime tradeoff is thus present,
requiring the speed and space considerations to be evalu­
ated in parallel.

The above considerations lead directly to a related
consideration, that of tuning the target architecture to fit
the host computer. For reasons of speeding up the target
machine and simplifying the microprogramming task,
certain functions that the host machine does poorly
should be avoided. One example is a host computer with­

out bit testing facilities; this suggests that a TEST BIT
target instruction would be unwieldy. Another example is
that of the word size of the target machine—it should
optimally be the same as the host machine word size, and
at worst a multiple thereof. The speed consideration is by
far the most frustrating of all. It may require leaving out
many features of the target machine that would otherwise
be desirable, simply because they are uselessly slow or
impossible to implement. It has also been shown that
many functions may run almost as fast in the software as
in the firmware,5 in which case, for the purpose of saving
control storage or for making the function more easily
changeable, they should not be microprogrammed.

A final consideration is that of the human program­
ming factor. There may well arise a situation in which
there are a handful of expert programmers trained on a
specific machine, but it is decided for one reason or
another to replace the machine with a microprogram-
mable processor. Certainly, if this new processor were to
support a target architecture similar or identical to the
original machine, the programmers would be doing useful
work much sooner than if they had to be retrained.
Furthermore, any existing software packages could be
converted in much less time, a factor that may well prove
to be the saving or the death of the conversion. Perhaps
the new processor is to run as a satellite to a bigger com­
puter. In this case, programmers may be writing assem­
bly language code for both machines. If they had identi­
cal instruction sets, then these programmers' sanity could
be preserved, whereas if they were somewhat different the
programmers may not be able to switch machines with
much alacrity. Furthermore, similarity between the two
machines would allow compilers to be written which
could produce optimized code for both machines using
identical algorithms.

The evaluation of all these interrelated considerations
can add up to a staggeringly complex problem. Indeed,
many decisions cannot be finalized until after the system
is implemented and used for a while. If the host computer
is equipped with writeable control storage, post-imple­
mentation decisions are no problem. However, most hosts
available today do not have such control storage, so that
the design must be fairly well finalized before it is imple­
mented. The best tool in this case is a good microcode
simulator for the host, equipped with timing and debug­
ging features.24 Using the simulator, small applications
programs and system software can be written in the target
instruction set and tested. This simulation should turn up
not only design and microprogramming errors, but also
help determine the usefulness of experimental features
and perhaps point out missing features. Uncountable
hours of headaches can be saved in this way.

The first design of the BUGS general-purpose processor
(META 4A) began with what were thought to be fairly
concrete decisions concerning the considerations dis­
cussed above:

Application facilities. The intent of the META 4A design
was to produce a general-purpose processor which could

Computer Architecture and Instruction Set Design 523

support a variety of applications, the most important of
which was graphics (keeping in mind that actual dis­
play regeneration was to be done with the META 4B).
Therefore, complete data structure searching and
manipulation operators, plus operators for manipulat­
ing arbitrary length character strings were included. In
addition, requirements for communication with the
IBM S/ 360-67 necessitated the inclusion of a micropro­
grammed interface between the META 4A and the
IBM multiplexor channel, plus target instructions to
control this communication.

Programming languages. This area was of definite con­
cern in choosing the target instruction set. The ultimate
goal was to use the LSD language for all programming,
but, it would not be available for at least a year. Hence,
for the interim, a powerful assembly language was
needed, but it was necessary to think ahead and include
facilities useful to a compiler. Unfortunately, the
knowledge of just what these facilities should be was
inadequate due to the fact that the compiler was only
partially designed and partially implemented at the
time. A limited set of instructions for procedure entry
and exit were included, plus the idea of automatic stor­
age was formalized and included in the firmware. Fur­
thermore, it was decided to go ahead and include what­
ever instructions would be useful for assembly language
programmers, and simply let the designers of LSD
ignore them if they were of no use.

Speed. Because the actual graphics display regeneration
was to be done in the META 4B, it was felt that the
speed of the META 4A was not as crucial as its power
and flexibility. The overall philosophy was to derive as
much speed as possible without deterring from produc­
ing a powerful and easy-to-use instruction set.

Emulator size. The size of the emulator was limited to
1500 microinstructions due to available funds. For this
reason there was not much choice but to code so as to
save control storage space at the expense of speed.

Host considerations. The META 4 host seemed general
enough so that any feature could be implemented; as it
turned out, this was definitely not the case. Examples
of the inadequacies that were discovered are discussed
in the following section.

Human factors. This, too, was a distinct problem. Pro­
grammers would be working on three separate proces­
sors (S/ 360-67, META 4A, and META 4B) in parallel,
and therefore the idea that the local processors should
look like S/360ss was a strong one. On the other hand,
these programmers were also experienced on other
processors and felt that working in two different envi­
ronments simultaneously would not be entirely out of
the question. It was decided that architectural similar­
ity was of only secondary importance.

A FIRST ATTEMPT

The first design of the META 4A was begun by consid­
ering the great variety of computers already on the mar­

ket and classifying them into categories. The evaluation
of these computers would allow a choice of a base archi­
tecture, which could then be improved and customized in
light of the considerations outlined previously. The fol­
lowing basic architectures were considered:

IBM 1130-like. This category is considered to be com­
posed of computers with relatively simple architectures
that would be easy to implement and run efficiently on
the META 4. Such things as simple addressing
schemes, short instruction formats, and a small number
of instructions would contribute toward this ease and
efficiency. On the other hand, programming on such a
machine would be slow and tedious, and there were no
high-level facilities for use by the compiler designer.
Furthermore, the integration of data structure and
character manipulation features would be difficult, due
to the lack of a sufficient variation of instruction for­
mats and too few operation codes. Experience with
IBM 1130's, and the fact that the META 4 host was
reasonably powerful, indicated that this was not the
way to go.

IBM S/360-like. In this category were computers with
more complex architectures, offering the programmer
more instructions and more power. Such an architec­
ture may include multiple target registers, general
addressing schemes, and a wider range of application
facilities, such as character manipulation, that make
the programming problem simpler and smaller. How­
ever, with this power came complex instructions that
require more time to emulate and more control storage
to contain the emulator. One advantage to be gained by
emulating an instruction set like that of the S/360 was
the pre-existence of useful software such as assemblers
and linkage editors. In a previous microprogramming
project[V2], an S/360-like instruction set had been
microprogrammed on an Interdata Model 3 with rea­
sonable success.

DEC PDP-11-like. This category basically included only
the PDP-11 family [D3]. It was considered separate and
distinct simply because the PDP-11 contained a blend
of features not found on other machines, such as stack
operations and a highly flexible addressing mechanism.
Instructions were generally variable in length, so that
only necessary fields need be included—this was felt to
be an advantage since the BUGS configuration had
only 32K bytes of storage. Some considered the variable
formats to be unnecessarily complex and confusing; one
prospective user went so far as to state that he would
refuse to code for the system if such an architecture
were adopted.

Stack machine. The final category was that of a stack
architecture. Although such an architecture was ideal
for high-level languages, it was difficult to program in
assembly language. More importantly, such an archi­
tecture requires special hardware to make up for hav­
ing the stack in core (e.g., the A and B registers on the
Burroughs machines,3 and without this hardware on the
host, execution could be intolerably slow.

524 National Computer Conference, 1973

After evaluating the above architectures, the 1130-like
architecture and the stack machine were ruled out for the
reasons mentioned. At this point the decision became dif­
ficult, but the PDP-11-like architecture seemed to have a
better blend of instruction power and size than the S/360-
like architecture. The fact that it was perhaps overly
complex seemed somewhat irrelevant since those people
who were to do the initial assembly language program­
ming were extremely experienced. For these reasons it
was decided to go with the PDP-11-like architecture. The
implementation of the PDP-11 architecture proceeded
smoothly during the summer of 1971, until finally, when
the bulk of the microprogramming was complete, timing
measurements were made on the resulting emulator. It
was discovered that a register/storage ADD instruction,
requiring only three storage cycles (approximately three
microseconds), took a total of 10 microseconds to execute.
This time was considered to be completely inadequate.

In retrospect, the bottleneck became glaringly appar­
ent. The instruction formats that had been adopted for
this architecture consisted of many small fields (two or
three bits) of information specifying such things as regis­
ter numbers, addressing modes, and operation codes.
These fields had to be isolated into various microregisters
in order to fetch the target registers, branch on the opera­
tion codes, and to perform other necessary functions. Not
enough attention had been paid to the META 4 host to
realize that such isolation would require many control
cycles since the only shifting that could be performed was
right and left shifts of one or eight bits. If a 3-bit field
must be isolated from bits 8 - 10 of a 16-bit word, for
example, five shifts of "right one" must be performed,
requiring about half a microsecond on the META 4. Per­
forming such shifting many times in the course of a target
instruction decreased the efficiency of the emulator dras­
tically.

From the failure of this first design attempt came the
knowledge that tailoring the target architecture to the
host machine is of great importance and cannot be under­
estimated. As stated, the speed of the META 4A was not
the most important factor, thus the slowness could per­
haps be justified by arguing that programs would be sig­
nificantly smaller with the PDP-11-like format than with
the other architectures considered. To ascertain the valid­
ity of the justification, a set of benchmark programs was
written using the PDP-11-like instruction set and a
slightly modified S/360 set. Such programs as storage
allocation routines, matrix inversion algorithms, and text
processing functions indicated that not only did the S/360
instruction set outperform the PDP-11 by a speed factor
of two to one, but that the PDP-11 programs were never
more than 10 percent smaller than the others.

A SECOND ATTEMPT

Once the PDP-11-like architecture was abandoned, the
only remaining possibility indicated by the investigations
outlined above was an S/360-like architecture. The pre­
vious microprogramming of an S/360 emulator had been

done in order to investigate the properties of the META 4
host, and this microprogramming indicated that S/360
instruction formats would be relatively free of complex
shifting operation and hence faster to decode as compared
to the PDP-11 formats. Indeed, when the second micro­
programming task was finished, it was found that an
equivalent ADD instruction took only 4.5 microseconds,
as compared to the 10 for the PDP-11-like set; this was
considered a satisfactory improvement, particularly in
light of the small difference in program size.

The final implementation of the META 4A general -
purpose processor, although S/360-like in nature, has
many major departures from the actual S/360. In terms
of architecture it is almost identical, except for the fact
that the major numeric data type is the 16-bit (halfword)
integer rather than the 32-bit (fullword) integer, due to
the fact that the META 4 host has 16-bit registers. The
two features omitted were the decimal data type, as this
was considered unnecessary, and the floating-point data
type. Floating-point is not included for two reasons. The
first is that it is extremely difficult to implement in
microcode without any hardware assistance; the resulting
instructions would be extremely slow and consume a
tremendous amount of precious control storage. The
second reason is that any large amount of floating-point
processing could be performed in the S/ 360-67 and the
results transferred across the multiplexor channel to the
META 4A. The META 4A has 16 target registers, imple­
mented using 16 of the META 4 host's 32 registers, and
instruction formats identical to those of the S/360. In
terms of instruction set, however, it has many improve­
ments over a S/360.

(1) The instruction address register, or Program
Counter (PC) as it is called on the META 4A, is
actually target register 1. This feature allows more
complex branching techniques, such as can be
obtained by performing an addition into the PC, or
by loading an address from storage into the PC.
Although this is a powerful facility, it does add to
the inscrutability of the user's program logic. More
importantly, as long as all local data is placed
beyond any instructions which refer to it, the PC
can be used as the program base register, thus
freeing another precious general-purpose target
register from this function.

(2). If the Pc is used as the program base register, it is
impossible for an instruction to perform a back­
wards reference. This is no problem for data refer­
ences, but branch instructions must be capable of
diverting control to a previous instruction. For this
reason, the format of the branching instructions
has been changed from including a base-displace­
ment address to including simply a signed displace­
ment considered relative to the PC. Not only does
this alleviate the backward branch problem, but it
makes the decoding of branch instructions much
faster, since a base-displacement address, requiring
a register number isolation, fetch, and addition.

Computer Architecture and Instruction Set Design 525

does not have to be performed. Branch instructions
on the META 4A execute faster than those on an
S/360-50!

(3) A new instruction format, called Register-Immedi­
ate (RI) format, has been added to the instruction
repertoire. This format allows the programmer to
perform the most common arithmetic and logical
instructions using a register and an immediate
halfword as the operands, thus saving both a base-
displacement calculation and the halfword of stor­
age that would be required for the remote constant.
This proves to be a major factor in making most
META 4A programs smaller than the equivalent
S/360 programs. Additionally, the RI format
instructions execute anywhere from one to two
microseconds faster than the equivalent register/
storage instructions.

(4) Instructions are provided which operate upon arbi­
trary length character strings. With these instruc­
tions the programmer can assign, compare, scan,
translate, and initialize character string u p t o 64K
bytes in length.

(5) SEARCH, ENQ, and DEQ instructions are pro­
vided for manipulating linked lists and tables. The
SEARCH instruction can scan a table or a linked
list for an arbitrary length key anywhere in its
members which is a logical function of an argument
key. If an entry satisfying the function is found, a
register is set to point to it. Once a SEARCH is
performed on a linked list with DEQ, the satisfying
entry can be deleted from the list, or a new entry
can be added following it with ENQ. These instruc­
tions have proven invaluable time and space savers
for implementing queue searches in the BUGS
operating system.17 Such queues as the free stor­
age queue, dispatch queue, and the interrupt exit
queue, are searched and maintained by these three
instructions. Unfortunately, they will not be gener­
ated by the LSD compiler, except perhaps via an
explicit primitive.

(6) One interesting architectural experiment which was
performed was to include a set of crude stack
manipulation instructions, allowing the program­
mer to set up an arbitrary size stack and then push
and pop information into and from it. The point of
such an experiment was to learn whether or not
programmers who were not experienced with a
stack machine could learn to make use of such
facilities, e.g., for expression evaluation. To date,
no BUGS software has utilized the stack instruc­
tions.

(7) Two instructions, ENTER and RETURN, exist in
order to simplify, and particularly to speed up, the
subprocedure entry and exit protocol. Each proce­
dure has associated with it a Stack Frame area,
which contains a register save area and an arbi­
trary amount of automatic storage. These Stack
Frame areas are maintained by the META 4A

operating system. Experimentation with the format
and content of these areas is continuing today.17

(8) Special facilities were included in the firmware to
support the addition of Extended instructions. An
Extended instruction is an instruction which has an
operation code not recognized by the firmware, but
which has special meaning to the operating system.
When such an instruction is executed, the firmware
stores the parsed instruction into a special area in
storage, and causes a target-level interrupt. At this
point the operating system can simulate any func­
tion desired and then return control to the pro­
gram. Such a facility has proven invaluable for
testing a new instruction before it is placed in the
firmware, and for use as a communication method
between user programs and the operating system
software.

In addition to the major points listed above, a great
number of miscellaneous instructions have been added to
the standard S/360 repertoire in order to fill out what
were considered "gaps" in the instruction set. This
included such things as storage to storage arithmetic,
more address manipulation features, and indirect
addressing on certain instructions. Although these
instructions are sometimes used and can help decrease
the size of a program, they also tend to add to the diffi­
culty of learning and digesting the instruction set. In par­
ticular, they increase the number of ways in which a
problem can be coded and make it extremely difficult to
select the most optimal algorithms. The question which
remains, and which is currently being investigated, is just
how much it is worth adding facilities which, although
they may cut the size of a program by 5 percent, clutter
up the instruction set and use up control storage. In addi­
tion, although these instructions were added to fill gaps in
the S/360 repertoire, they have introduced their own
gaps. An example is the addition of address manipulation
instructions. Such an addition suggests that perhaps the
address should be recognized as a valid data type, just as
an integer is, and a full address manipulation instruction
subset should be added. The META 4A does not have
such a full subset, so that a new gap is introduced. Simi­
larly, many a META 4A programmer has been heard to
mutter such things as "if I can add two halfwords in stor­
age, why can't I OR two halfwords?"

Another problem with the addition of " random"
instructions is exemplified in an instruction by instruc­
tion analysis of the code to be generated by the LSD
compiler. A full third of the META 4A instruction set is
never utilized by the compiler; once the programming
load is shifted over to LSD, these instructions will become
virtually useless. The control storage taken up by them
could probably be put to a much better use.

The BUGS system has been in standalone production
use since August 1972, primarily for research into N-
dimensional mathematics. The performance of the
META 4A has proven to be rather impressive. Based on

526 National Computer Conference, 1973

the applications programs written so far, a typical META
4A program is between 3/4 and 2/3 the size of the equiva­
lent S/360 program. Furthermore, the speed of execution
of these programs (using halfword operands) lies some­
where in between the speed of an S/ 360-40 and an S/360-
50, which is extremely pleasing considering the cost ra­
tio between the META 4 host (about $30,000) and an
S/360.

One interesting benchmark was a comparison of the
IBM 1130 emulator supplied with the META 4 host
(which is twice as fast as an actual 2.2 microsecond IBM
1130) and the META 4A emulator. A version of the
META 4 simulator used for debugging microprograms1

was written for both of these target machines and com­
pared. The comparisons showed that the simulation speed
of these two programs were indistinguishable. However,
the META 4A version is 1/3 the size of the 1130 version,
due primarily to the lack of character manipulation on
the 1130.

In light of the above benchmarks and hand simulations
of test algorithms written for the Data General NOVA
and DEC PDP-11 series, it appears that arbitrary algo­
rithms typically do not run appreciably slower and do use
less storage on the META 4A, while algorithms that take
advantage of the special purpose instruction on the
META 4A both run considerably faster and use consider­
ably less storage.

CONCLUSION—A RATIONAL APPROACH VIA
FORMALIZATION

Although an initial framework around which a user can
design and implement his own target machine has been
built, there is nothing to prevent this design from being ad
hoc. Indeed, in light of the many considerations which
must be synthesized, an ad hoc design is inevitable. It has
been shown that an architecture can be both an improve­
ment over previous architectures and reasonably efficient
while still being disorganized and incomplete. Such defi­
ciencies cause the assembly language programmer many
headaches in terms of choosing algorithms, optimizing
code, and generally writing programs. Furthermore, if the
choice of target instructions is disorganized, many
instructions will be included which are minimally useful
to the assembly language programmer and useless to the
compiler designer, simply because a far-fetched use of the
instruction was envisioned by one of the members of the
design team. An interesting example of this is the LXB
instruction on the META 4A, which reads a 16-bit half-
word from storage and loads it into a register after
exchanging the two bytes. This instruction was included
for no other reason than the META 4 host machine had a
byte swapping facility. It should be obvious that LXB has
rarely if ever been used. All in all, the ad hoc architecture
is due to a random combination of features useful to the
application, features easily adaptable to the host, and
features useful to the programmer.

How can such architectures be eliminated? A look at
many of the high-level languages in use today, particu­

larly PL/1 , will reveal a general philosophy that deals
with the problem. In PL/1 , there is a well-defined set of
data types and a well-defined set of operators, and any
combination of these data types and operators is defined,
except where meaningless. If such a formalization is
adopted, it becomes easier to choose the statements neces­
sary for each individual step of a program, and reduces
the obscurity which results when "unnatural" statements
are required. Furthermore, it reduces the tendency
toward operators and data types which are added for
special cases and hence do not fit into the overall lan­
guage scheme. There is no reason why this same formali­
zation cannot be applied at the lower level of target ma­
chine instruction sets. Since the average program is con­
cerned chiefly with data manipulation, as opposed to I /O
or interrupt handling, a formalization of the data manip­
ulation facilities of the machine would have major
impact.

The most apparent programming benefit of such for­
malization would be to the compiler designer. In order for
him to allow the aforementioned generality to a program­
ming language on most current machines, he must gener­
ate unnatural code which performs the operations indi­
cated by the programmer. This code could be eliminated
if the operations were made natural by allowing them to
be performed directly by single instructions. The Bur­
roughs family of stack machines has adopted just such a
philosophy and the results are well known: ALGOL
compilers which can generate efficient code at an incredi­
bly high rate. In addition, the assembly language pro­
grammer gets an equivalent benefit in that he can code
the individual steps of an algorithm in a more straightfor­
ward manner, without regard to such irrelevant consider­
ations as whether an operand is in storage or in a register
or whether a character string is longer than 256 charac­
ters. Programs coded in such an environment should be
shorter, more free of errors, and easier to modify in the
future.

The programming benefit gained from formalizing a
proposed architecture is not the most important one,
however. The purpose of this paper has been to outline a
set of considerations which the target computer designer
must keep in mind when creating a new machine. If the
design is approached in a haphazard fashion, the designer
will have perhaps 100 or 150 assorted features and
instructions about which he must ask such questions as
"are they useful to the application?", "how useable will
they be by assembly and high-level language
programmers?", and "will the host machine support them
efficiently?" Such an overwhelming number of questions
may be impossible to answer, particularly when the inter­
relationships between the operations is unclear. By for­
malizing this machine, the synthesis of these considera­
tions can be made simpler and more productive. The
designer need only answer these questions about perhaps
twenty operations and five data types, a much smaller
task. If these features are proven to be useful and effi­
cient, then the designer can feel assured that the final

Computer Architecture and Instruction Set Design 527

implementations of the instruction to perform the opera­
tions will be useful and efficient.

Current research at Brown is attempting to deal with
the formalization question. An analysis of the use of the
current META 4A instruction set is being performed via
modifications to the firmware with the hope of deter­
mining instruction and instruction sequence character­
istics and applying these characteristics to a determina­
tion of an optimal instruction set. A formalized archi­
tecture will then be designed, experimentally imple­
mented, and an evaluation made of the improvement in
program coding ease, speed, size, etc. Once this is done,
a more detailed guide to computer design and imple­
mentation can be written.

REFERENCES

1. Anagnostopoulos, P. C, META 4 Simulator Users' Guide, Brown
University, Center for Computer and Information Sciences Tech­
nical Report.

2. Anagnostopoulos, P. C, Sockut, G. H., META 4A Principles of
Operation, Brown University, Center for Computer and Informa­
tion Sciences Technical Report.

3. B6500 Reference Manual, Burroughs Corp., 1969.
4. Baker, F. T., "System Quality through Structured Programming,"

AFIPS Conference Proceedings, Volume 41, Part 1,1972.
5. Clapp, J. A., "The Application of Microprogramming Technology,"

ACM SIGMICRO Newsletter, April 1972.
6. META 4 Computer System Reference Manual, Digital Scientific

Corporation, May 1971.
7. Dijkstra, E. W., Notes on Structured Programming, Technische

Hogeschool, Eindhoven, 1969.
8. PDP-11 Processor Handbook, Digital Equipment Corp., 1971.

9. System/360 Principles of Operation, International Business Mach­
ines Corp., 1968.

10. CP-67/CMS User's Guide, International Business Machines Corp.,
1971.

11. Model 4 Micro-instruction Reference Manual, Interdata Corp.,
1968.

12. Kleir and Ramanoorthy, "Optimization Techniques for Micropro­
grams," IEEE Transactions on Computers, July 1971.

13. Microprogramming Handbook, Microdata Corp., 1971.
14. Mandell, R. L., "Hardware/software trade-offs - Reasons and

directions," AFIPS Conference Proceedings, Volume 41, Part I,
1972.

15. QM-1 Hardware Level User's Manual, Nanodata Corp., June 1972.
16. Rosin, R. F., "Contemporary Concepts of Microprogramming and

Emulation," ACM Computing Surveys, Volume I, December 1969.
17. Stockenberg, J. E., Anagnostopoulos, P. C , Johnson, R. E.,

Munck, R. G., Stabler, G. M., van Dam, A., "Operating System
Design Considerations for Microprogrammed Mini-computer Sat­
ellite Systems," Proceedings of the National Computer Conference
and Exposition, June 1973. .

18. Stabler, G. M., Brown University, Graphics System Overview,
Brown University Center for Computer and Information Sciences
Technical Report.

19. Stabler, G. M., META 4B Principles of Operation, Brown Univer­
sity, Center for Computer and Information Sciences Technical
Report.

20. van Dam, A., "Microprogramming for Computer Graphics," ACM
SIGMICRO Newsletter, April 1972.

21. van Dam, A., Schiller, W. L., Abraham, R. L., Fox, R. M., "A
Microprogrammed Intelligent Graphics Terminal," IEEE Transac­
tions on Computers, July 1971.

22. van Dam, A., Bergeron, D., Gannon, J., Shecter, D., Tompa, F.,
"Systems Programming Language," Advances in Computer, Vol­
ume 12, Academic Press, Oct. 1972.

23. Wilner, W. T., "Design of the Burroughs B1700," AFIPS Confer­
ence Proceedings, Volume 41, Part I, December 1972.

24. Young, S., "A Microprogram Simulator," ACM SIGMICRO News­
letter, October 1971.

