
ACM SIGSOFT Software Engineering Notes vol 22 no 2 March 1997 Page 25

Issues in Designing an Information Model
for Application Development

Gary H. Sockut , Helen P. Arzu,
R o b e r t W. M a t t h e w s , and David E. S h o u g h 2

I B M Santa Teresa Laboratory
P. O. Box 40023

San Jose , CA 95161-9023

A B S T R A C T

IBM's 8 object-oriented information model lets a customer
share data among various tools for application development.
This paper discusses several issues in designing the informa-
tion model, namely (1) techniques for diagrams (an essen-
tial part of communication between an information model
designer and other designers or tool writers), (2) organiza-
tion of the design of the information model (an essential step
when many designers design anything large), and (3) techni-
cal content. These discussions of the experience of designing
the information model should be valuable for further design
of the information model and for other design efforts, e.g.,
involving other models or other integration of tools.

1. I N T R O D U C T I O N

This paper describes solutions to issues in designing IBM's
object-oriented information model, which supports applica-
tion development activities. The information model contains
a set of object and relationship class definitions to describe
and relate information about an enterprise and its data pro-
cessing applications. Through the use of these definitions,
different application development tools (perhaps produced by
different vendors) can share this information; the output of
one tool can be the input to another.

Specifically, we discuss issues in these aspects of the design:

1. Techniques for diagrams facilitate communication
among designers, reviewers, and users of the model.

2. The organization of the design process enabled us to
design a large model with a large number of designers
and reviewers in a limited time.

3. The technical content is the result of the modeling effort;
it enables sharing of information among application de-
velopment tools.

We hope that these discussions of our experience can be valu-
able for further design of the information model and for other
design efforts, e.g., involving other models or other integration
of tools.

2. T E C H N I Q U E S F O R D I A G R A M S

With a large team of designers (both within IBM and outside
IBM), and with a large set of writers of application develop-
ment tools, communication is essential. With a large set of

2 Correspondence about this paper should go to R. W. Matthews.
3AIX, DATABASE 2, DB2, IBM, IMS, 0S/2, SQL/DS, and Sys-

temView are trademarks of International Business Machines Corp.

constructs in the information model, diagrams are an essential
part of that communication.

A combination of diagramming techniques is required to fully
represent the information model. The techniques come from
three diagram types:

• Entity-Relationship diagrams (ERD) show entity names,
relationship verbs, and cardinality.

• Instance Diagrams show instances of entities (including at-
tribute names and values) and of relationships.

• Inheritance Diagrams show the hierarchical layout of the
model (superclasses and subclasses), including inherited re-
lationships.

The first two diagram types are standard and commonly used
in data modeling. There are organizations 4 and conferences
that stimulate discussion of new developments and issues as-
sociated with the ER approach [March 1988, p. v].

In these gatherings, it is recognized that "although we (are)
all practicing ERD modelers, each corporation represented
and evolved their own unique methodology for information
modeling. The terminology used and even the diagramming
conventions adopted were often variations of the strict ERD
approach, that had been adapted to meet the needs of the
corporate environment being serviced" [Moriarty 1988, p. 25].

The need for adapting ER diagrams was exactly the situa-
tion in which our development team found itself. We needed
to adapt ER diagrams in order to support an object-oriented
model. We needed a diagramming technique that clearly re-
flected the hierarchical structure of the model.

We searched for a method of diagramming that was easy to
read, manageable in size, and consistent with the best features
of object-oriented diagrams already out in the field.

2.1 Techn iques t h a t were Cons idered

Currently, there is no diagramming standard for object-
oriented development [Martin 1993, p. 54], so we looked at
diagrams used in object-oriented design and data modeling.

~.1.1 Martin and Rumbaugh

James Martin, in his text, Principles of Object-Oriented De-
sign and Analysis, acknowledges that there is a need for a
diagramming standard that is easy for conventional systems
people to learn. He goes on to make suggestions for standards.
Martin's suggestions were based on Recommended Diagram-
ming Standards for Analysts and Programmers, which he calls
the "bible" for many application development vendors [Mar-
tin 1993, p. 55].

We looked at the diagramming Martin suggested and the di-
agramming technique used by James Rumbaugh et al. [Rum-
baugh 1991]. We referred to Rumbaugh heavily during our
architectural design.

4The ER Institute and the Seat Francisco Bay Area Entity-
Relationship Diagramming (ERD) User's Group are such ori~a~tizations.

ACM SIGSOFT Softwaze Engineezing Notes vol 22 no 2 March 1997 Page 26

R B R
e a e
n s d ae; ,
m d
e i k
s c n e

n e

0;1 0;1

Data Item O; 1;C

0;1
O;lf O;m

Has Type

/
~,0;m;O ~, O;m O;m

C Data Item
o: Element

Om i

Associated
With

0;m

Has Further
Context

Data Item
Reference

1 0;1

Resolves to I
I

H I
8 n
S

KIx
e l
Y

O;m

I
t Data Definition

E ement

0;IT

0;1

Data DefinRion
Reference

[Has Element Type

0;1 0;1 0;1 0;,1 1;1 | I I I
Array Structure Union I I

I 1;m;O

Data I I Symbolic Define Index File

Contains

LB = Lower Bound
UB = Upper Bound

O;m

C Definitional ,4

Points to

Has Parm

Return

0;1 O:m;O

Function
Definition

Resolves to

, I
Simple
Definition

(: Data
Definition

Area Offset

o;11o;1/ Has Size Refer

el Has SIz
0;1 ~,

I Logic
Element

I
Enumerated
List

~l 0;1

Data Item
Element

Pointer

0;1

Figure 1. H or i z on ta l Structure

ACM SIGSOFT Software Engineering Notes vol 22 no 2 Mazch 1997 Page 27

l ~ O;m

Definitional o m Has Parm
E leme nt {~; i

~ ;m Return

| ~ Definition O;m;O I

Data
Definition
Element o:m

Definition o;1
Reference I

Resolves j'i Data O;m
Definition

Polnl~ To

1
Has

Element
Type

Array [l~rL;] I I ; [o [l l l [I

O;m

Pointer [0;I

Structure

Data Item
Element

0;m Renames

0;m;O Based On
O;m Redefines

Has Further Context

Beta Item
Reference

I0; I
Resolves to

i)3~.11~ Data Item

O;m v i I 0;1
Associated with (

O;m;O

t o o .
Index

Union 1;m;O

_.~ Symbolic
File

-{ Area 0;,1 Has Size

f l Offset I

.• Enumerated }
List

- -~ Define I

Contains

Has Size Refer

Loglo
Expression

Data Structures
Subject Area

Figure 2. Vertical Structure

ACM SIGSOFT Software Engineering Notes vol 22 no 2 March 1997 Page 28

Upon further assessment, we did not fuRRy adopt either Rum-
baugh's or Martin's diagramming because:

• Rumbaugh's diagramming approach did not provide the de-
tail required to document the information model.

• Martin's diagramming approach introduced several sym-
bols to replace characters (strings) used in ER diagram-
ming. We felt the characters currently used when diagram-
ming our model were more straightforward and required
less interpretation than symbols.

2.1.~ Conceptual Graphs

Another diagramming technique we considered was intro-
duced by John Sowa [Sowa 1984]. Conceptual graphs are
based on artificial intelligence semantics. The graphs form a
knowledge representation language based on linguistics, psy-
chology, and philosophy. In the graphs, concept nodes rep-
resent entities, attributes, states, and events; relation nodes
show how the concepts are interconnected.

Conceptual graphs at tracted our attention because we could:
(1) diagram the precise semantic nature of information, which
can be used to generate logic adhering to that information, (2)
use logic to generate predicate calculus, (3) use the linguistic
properties to aid in the development of stylized English di-
rectly from the model, (4) show all the semantic properties of
the model, and (5) show partitioning and concurrency.

But the benefits of conceptual graphs were countered by char-
acteristics of our model:

• We need to show model information content, not logic of
how it was designed.

• The generated logic and predicate calculus were not require-
ments for our customers.

• It would be quite some time before the ability to generate
stylized English would be considered an advantage in the
market place.

Also, we found that conceptual graphs were complex, were

difficult to read, and used a considerable amount of space

on paper. Of course, this space reduced the amount of in-
formation per page. This reduced the portion of the model
that could be visualized at one time, thus making it harder
to understand the model.

2.1.3 System View's Technique

The information model group at IBM in the Research Tri-
angle Park (RTP) worked with the group at the IBM Santa
Teresa Laboratory on the information model project. The
SystemView group at RTP developed another object-based
data model. System View (a tool for managing system re-
sources) used a vertical format to show relationships, but the
diagrams did not show an inheritance hierarchy. The Sys-
temView model had considerably fewer levels of hierarchy and
fewer inheritance and constraint factors than does the infor-
mation model. The information model group at RTP worked
with SystemView on model convergence and consistency. The

information model group at RTP expanded the SystemView
diagramming format to reflect inheritance hierarchies.

~.1.~ Adjustments in Diagram Requirements

After reviewing these various object-oriented diagramming
techniques, we determined that one technique could not
cover all aspects of the model. We decided to combine (1)
object-oriented diagramming techniques that show hierarchi-
cal structures with (2) our established ER and instance dia-
gramming techniques for the finely grained level of the model.

The hierarchical structure needed to be similar to ER model-
ing diagramming because:

• We still needed to use ER diagrams for the most granular
level and wanted a smooth visual transition from coarse to
granular levels.

• Our target audience was familiar and comfortable with the
current ER conventions.

2.2 Narrowing D o w n the Select ions

We combined all the elements we liked about the diagrams we
reviewed. We narrowed down our selections to what we called
horizontal diagramming (based on ER diagramming and Mar-
tin and Rumbaugh diagramming) and vertical diagramming
(based on the diagrams used by developers of the SystemView
Data Model). Once we narrowed down our selection to two
types, we identified common elements - symbols and char-
acters that could be used regardless of whether the diagram
was horizontal or vertical. We then did usability testing to
determine which approach to use.

2.3 Test ing the Select ions

The approach we used for usability testing are shown in figures
1 and 2.

~.3.1 Usability Study: Summary of Results

The results of the test showed that 92% of the users (11 of
12 test participants) preferred Figure 1, the vertical diagram,
over Figure 2, the horizontal one. Users consistently noted
that the vertical diagram was easier to read and bet ter clari-
fied the flow of information.

~.3.~ Summary Of Recommendations

Although most test participants preferred the vertical style,
many of them recommended additional changes to improve
its usability. Recommendations were to use s tandard object-
oriented terminology and to provide more visual cues (e.g.,
boldface superclasses) to clarify the information in the dia-
gram.

Specific comments included:

• Put the Parent classes in bold boxes with boldface text to
more easily find superclasses.

• Offset or change the font of the relationships so you can vi-
sually separate them from the other text. Most everything
looks the same - seems to blend together now.

ACM SIGSOFT Software Engineering Notes vol 22 no 2 March 1997 Page 29

• For inherited relationships, add a hollow triangle. For the
other relationships, move the arrowhead to the middle of
the line.

• Crossing lines are okay but extra "jogs" in the lines are
confusing.

• Put inverse relationship names in parentheses at the other
end. Put forward-direction relationship names at the source
end of the relationship if possible.

• Use bold boxes for superclasses, or put the names of the
superclasses in bold or uppercase.

• Use standard object-oriented notation like Booch's O-O no-
tation to clearly show contains, uses, owns, kinds of rela-
tionships.

• Can the bold lines be eliminated? Superclasses are always
above subclasses, so that is enough indication. Arrows de-
note relationships. Alternatively, use bold for the object
class boxes to make them stand out more and normal thick-
ness for connecting lines.

2.4 F u r t h e r D e f i n i t i o n o f t h e S ty l e G u i d e l i n e s

The team responsible for information model documentation
created more detailed guidelines for documenting and dia-
gramming the model, concentrated on the more granular level
of ER diagrams.

2.~.I Object Class

Use the following rules when showing object classes: (1) Avoid
spaces in object class names in text (following C-k+ conven-
tions). (2) Use initial uppercase on each component word of
a class name. (3) Avoid underscores in diagrams.

So a diagram looks like:

F i g u r e 3. Example o f objec t n a m e in d i a g r a m

2.4.2 Relationship Class

Use the following rules when showing relationship classes: (1)
Use initial uppercase on each component word of class name.
(2) Omit source and target in relationship names. (3) In
diagrams, show the verb for one direction of a relationship.

Here is an example:

I File
I (application

component) :] Apt
I $toredln/Store Library Part

F i g u r e 4. Example o f re lat ionship n a m e in d i a g r a m

2.4.3 Instance Diagrams

Use the following rule when showing instance diagrams: Show
primary (or necessarily specified) values within the box; show

other values below it.

Use the following rules when showing attributes: (1) Avoid
spaces between component words in text. (2) Use no emphasis
in text. (3) Follow by "=" and attr ibute value in diagrams.
See Figure 5.

When showing attr ibute values, use all lowercase (following
"=" in diagram) unless some uppercase character is an intrin-
sic part of the value name.

Here is an example instance diagram:

NAME

attrName=value
NAffE

mainAttrffivalue

2ndryAttr=value
3tlaryAttr=value

F i g u r e 5. A n i n s t a n c e d i a g r a m

3. O R G A N I Z A T I O N OF T H E D E S I G N P R O C E S S

Now we turn from diagrams to the design process. When
many people design a large specification, a well-organized pro-
cess is essential. This section covers two aspects of organiza-
tion of the design process, namely (1) techniques for dealing
with a diverse group of modelers and (2) cost-effective, multi-
site design reviews.

3.1 T e c h n i q u e s fo r D e a l i n g w i t h a Diverse Group o£
Modelers

A central organization within IBM coordinated the design and
performed most of the design, but the design required the ex-
pertise of other modelers within IBM and also some indepen-
dent application development vendors that have a cooperative
relationship with IBM. We needed such a large group of mod-
elers and reviewers, because the information model should
satisfy the modeling needs of a wide variety of tools. Here we
will discuss the coordination among diverse modelers.

3.1 Establishing Ground Rules

When the modeling team first assembles, several topics must
be discussed and agreed upon to expedite the modeling pro-
cess. This section discusses most of them.

3.I.1.I Methodology
Any experienced modeler has a preferred methodology or way
of approaching a problem. When several modelers are united
to address a given problem, they must agree on a single ap-
proach. Below are three common ways of addressing a mod-
eling challenge based on the relationship between the model,
processes, and existing technologies. The modeling team must
agree on the best course of action for the problem it is ad-
dressing:

• Process driven - model the data used in existing defined
processes.

• Data driven - model the data; then identify processes to
manipulate the data.

• Technology driven - model the data found in existing tech-
nology (Database 2, etc.).

ACM SIGSOFT Software Engineering Notes vol 22 no 2 March 1997 Page 30

3.1.1.2 Base Assumptions
The modeling team must also establish some base assump-
tions:

• Will the basic modeling paradigm be entity-relationship or
object-oriented? Tha t is, will the modelers be only con-
cerned with the da ta content of the model or will they also
define the behaviors of the things that are modeled?

• Will the model use the concepts of subclassing and inheri-
tance? I f so:

- Will the modelers be limited to single inheritance, or will
multiple inheritance be allowed?

- Will supertypes (superclasses) be concrete, abstract , or
both (i.e., can the superclass be instantiated or not)?

• Wha t naming conventions will be followed?
• With what recognized standards will the model comply?

• Wha t diagram conventions will the modelers use?
• Wha t rules shall the t eam follow for establishing a common

terminology?

• Are there any modeling restrictions that are imposed by an
intended implementat ion environment?

• Wha t guidelines will the team follow with respect to nor-
malization and redundancy of constructs in the model?

All of these and more are needed to establish the "playing
field" where the modeling team will operate.

3.1.I.3 Model Scope
It is assumed tha t the "charter" tha t established the modeling
team includes some indication at a gross level of the nature
of the problem to be addressed. The modeling team must
ensure that all members understand the scope within which
they are to operate. Often the team will refine the scope to
be more explicit and precise in defining the boundaries of the
intended model. This refinement will describe the areas to be
modeled and can also define the division of labor relative to
the project.

The division of labor identifies the rules under which pieces of
the model can be developed by sub-teams and later integrated
into the whole. Two basic approaches are:

• Divide the overall model into submodels, each having a de-
fined owner and where every model construct belongs to
only one submodel.

• Identify overlapping subject areas in the overall model and
assign ownership of the model constructs individually. A
subject area is a domain of application development (e.g.,
enterprise modeling or relational database design) that the
information model is to cover. A construct may appear in
more than one subject area.

Both approaches rely on close teamwork and communication
to ensure tha t "overlap" constructs address all requirements.

3.1.1.~ Modeling Tool(s)
The modeling team must identify the tool(s) it will use to

produce the defined deliverables. The tool(s) must support
most or all of several tasks (model definition, diagramming,
documentation, and implementat ion assistance).

3.1.1.5 Project Management Procedures
Early on, several project related procedures must be defined
so that the team's progress is not impeded unnecessarily.
These procedures are mostly administrat ive and deal with
issues tha t can and will arise during the life of the project.
These include:

• Approval process - how are model proposals evaluated and
approved?

• Change Control process - how are changes approved for
previously approved parts of the model?

• Issue Resolution Procedures - how are general issues re-
solved? Wha t is the escalation pa th for resolving major
and minor issues?

3.1.~ Handling Requirements

Once the modeling team has discussed most or all of the topics
listed in the sections above, it is ready to begin modeling. Or
is it? Does the team know what it needs to model? Are t h e r e

any itemized requirements that can drive the project? How
will the team determine when it is done?

Initially, every group represented on the modeling team has
some set of base requirements tha t it expects the product
of the modeling effort to meet. The resulting model will un-
doubtedly differ, perhaps substantially so, f rom the model any
one group would have produced independently. This is not
necessarily bad. Frequently, such teams devise new and bet-
ter ways to model the information so tha t the requirements
of all groups represented are addressed.

As the modeling progresses, new requirements may surface.
Some of these requirements come from the modeling team or
its members. Others can come from other interested parties
such as customers, vendors, and IBM tools.

Requirements can also arise from efforts to conform to various
recognized standards. I f the model will be implemented as a
running system, :frequently the target implementat ion envi-
ronment may introduce additional requirements. Typically,
these implementat ion requirements are in the form of restric-
tions of how things can be modeled, named, etc., not what
can be modeled.

Regardless of the source of the requirements, the modeling
team must establish and continually review priorities for each
requirement. Careful tracking and recording of responses to
each of the requirements will aid in reducing rework, promot-
ing understanding, and compiling useful mater ial for inclusion
in user documentation.

3 . 2 C o s t - E f f e c t l v e , M u l t i - S i t e D e s i g n R e v i e w s

When faced with a need to conduct reviews of complex designs
across multiple sites, the information model t eam developed
an innovative, effective process which greatly reduced travel
costs and inconvenience. This process consisted of an initial

ACM SIGSOFT Software Engineering Notes vol 22 no 2 March 1997 Page 31

video-conference meeting followed up by dialogue on the de-
sign specification.

The dialogue used REVUFILE, which is an internal IBM tool
for reviewing documents. REVUFILE currently runs on the
VM operating system. It provides all the function needed for
inline annotat ion of text documentat ion at a line-by-line gran-
ularity. I t does not offer the same granularity for graphics.
Participants in the creation and review of a document can all
see the document online (in a way that resembles its hard-copy
appearance), enter comments in their appropriate contexts
(e.g., directly under a sentence to which the comment applies),
and see their comments (and other part icipants ' comments)
in these contexts. We used REVUFILE as a mechanism to
gather discussion on a given topic. This was superior to using
a forum (simple electronic bulletin board), because a forum
offers only a chronological tracing of a discussion, not the
segmentation by discussion topic that we achieved through
REVUFILE.

3.2.1 Design Content

The DR2 (Design Review 2) was to be performed on the first
"complete" version of the information model. It was complete
in the sense that all of the major pieces were present but were
not detailed in all aspects. In particular, the bulk of the ma-
terial consisted of "pictures" of objects and their relationship
to other objects. Subsequent design refinement would add
at tr ibutes and methods to the objects and semantics to the
relationships.

Previous experience had shown that it was crucial to get
agreement and buy-in from the tool architects to this earliest
version of the model. Most changes late in the model devel-
opment cycle could be traced back to information present in
this DR2-1evel model. Thus it was critical to get a thorough
technical review of this model.

The entire model was too large to be reviewed as a whole.
Also, not all tool architects cared about all portions of the
model. Therefore, the model was divided into components.
Each component had a lead designer and a list of tool archi-
tects interested in tha t portion of the model.

3.2.2 The Challenge

We recognized tha t we needed the synergy of multiple re-
viewers discussing the same issues. Each component of the
information model required in-depth technical design reviews
by tool architects at multiple sites. These sites spanned 8
time zones and included non-IBM vendors. We were on a
very aggressive schedule tha t did not allow calendar t ime for
extensive review-by-mail.

The classic single-meeting design review would have been
ideal from the standpoint of technical interchange. But this
would have required flying approximately 20 reviewers to
IBM's Santa Teresa Lab from Europe and the East Coast
of the U.S. Some would have to make multiple trips based
on the design schedule of the components in which they had
interest. This was clearly an unacceptable cost.

The challenge then was in getting a synergistic, thorough re-
view without incurring unacceptable travel costs. Tha t is,
how do we approximate a single meeting without holding such
a meeting?

3.2.3 The Solution

We came up with a review process which relied on two key
aspects: video-eonfereneing and REVUFILE. For each com-
ponent, we would schedule a three-site video-conference to
walk the tool architects through the proposed model and note
their pr imary issues and concerns. This video-conference was
taped and copies of the tape were sent out in overnight de-
livery to those locations without video-conference hook-ups
(Europe and non-IBM vendors).

At the conclusion of the video-conference, a REV U FIL E was
created on a common eonferencing disk. Since most of the re-
view material was graphic in nature, a "table of contents" was
put in the REVUFILE to organize the discussion. Tool ar-
chitects added their comments to either the text block under
discussion or to the contents entry for the picture of interest.
Model designers would then answer the concerns directly in
the REVUFILE. Other interested parties could see the inter-
change and add their comments as appropriate.

A deadline was established for inclusion of all comments, con-
cerns, and issues. The model designers would then rework the
model based on the issues accepted and changes indicated and
redistribute it as the final DR2-1evel design. This was used as
the basis for further design refinements.

3.2.~ Logistics

A considerable amount of detailed activity needs to take
place for the process to run smoothly. Video-confereneing
required significant lead-time for scheduling. We booked ap-
proximately the same t ime slot each week for six weeks. A
schedule was published detailing which components would be
reviewed at each meeting so tha t tool architects could plan to
at tend as appropriate.

The tapes were made at each location. This is easily done
through most video-confereneing set-ups. Then we spent the
afternoon copying the video-tapes for distribution to Europe
and non-IBM vendors. Up to six copies had to be created
for some sessions. This was an unavoidable, t ime-consuming
process. Alternatives were considered such as using an outside
service for copying. This idea was discarded due to turn-
around time and security considerations.

The REVUFILEs were created on a common project confer-
encing disk. Reviewers did not need direct access to this disk;
REVUFILE allows reviewers at remote locations to append
comments. An output listing file was placed on the common
disk and made available to those at remote sites as well for
printing hard copies.

3.2.5 Summary of Process for Design Reviews

The information model design team achieved a cost-effective,
quick-response means of reviewing complex designs across
multiple sites. In some ways we received bet ter responses

ACM SIGSOFT Software Engineering Notes vol 22 no 2 March 1997 Page 32

than in a classic single-meeting review, because reviewers had
a chance to spend time thinking about an issue before raising
it.

We did lose a little bit of synergy compared with a design
review meeting. The discussions in REVUFILE tended to be
briefer than a corresponding oral discussion. But this was
made up for by the ability to bring in other sources and use
off-line "think-time."

Handling the logistics ofvideo-conferencing and tape distribu-
tion took more of the design team's time. This was necessary
to get the level of participation desired. The travel savings
were substantial. Clearly, we would not have the participa-
tion desi~d if we handled the design review in a more tra-
ditional manner. Even given optimal scheduling, the reviews
would have taken at least twenty cross-country and transat-
lantic trips of one week's duration each. A conservative dollar
estimate would be more than thirty thousand dollars.

4. T E C H N I C A L C O N T E N T

The last area we will discuss is the technical content. We
will discuss technical issues that deal with the goals of ac-
commodation of diversity, sharing of definitions, and support
for impact analysis. The purpose of this section is to show
the type of thinking and the style of design that we found
appropriate for achieving these goals. Many of the issues and
examples come from the relational database subject area. An
introductory knowledge of database management will help in
understanding this section. The examples are just a small
subset of the entire information model. The goals and the
style of design should apply to subject areas that may be
added to the information model in the future.

4.1 A c c o m m o d a t i o n o f D i v e r s i t y

Different programming languages, different database lan-
guages, and even different versions of one language (e.g., SQL)
have different features and use different techniques in repre-
senting data and its behavior. Since different environments
for application development use many different languages, it is
essential for the information model to accommodate the differ-
ences. The information model uses one set of constructs hav-
ing enough flexibility to accommodate the differences. We be-
lieve that this flexibility gives the information model sufficient
generality without making the model unnecessarily large. Of
course, the well-known technique of an inheritance hierarchy
(superclasses and subclasses) also helps to accommodate di-
versity.

~.1.1 Language-Independent Data Definition with Language-
Specific Eztensions

Some aspects of a data definition are language-independent
(applicable to several languages). For example, many lan-
guages can each reflect the fact that each EMPLOYEE has
a character NAME and a numeric SALARY. Some aspects
are language-specific. For example, if a data item is the basis
for an SQL column definition, a relational database comment
can apply to the SQL column definition, but if a data item is
instead (or additionally) the basis for a PL/1 variable defini-

tion, a relational comment cannot apply to the PL/1 variable
definition. Also, different languages have different rules for
naming data items.

To avoid cluttering language-independent constructs by in-
cluding language-specific attributes, we relate language-
independent constructs to language-specific extensions. For
example, in Figure 6, the HasColumnType relationship class
connects the language-independent DataElement object class
to the language-specific ColumnDefinition object class, which
contains attributes like relational comment and SQL name.
If the name in the DataElement satisfies the naming rules for
SQL, a database designer can implicitly use that name for a
column definition by leaving a null value for the SQL name
in ColumnDefiultion. If the designer wants to use a different
name for the column definition, or the name in the DataEle-
ment does not satisfy the naming rules for SQL, the designer
can specify a nonnull value for the SQL name in ColumnDef-
inition; this overrides the name in the DataElement.

I

1 4HasColumnType Column DataElement Def i nit ion
I

F i g u r e 6. L a n g u a g e - l n d e p e n d e n t D a t a E l e m e n t a n d
SQL-spec i f i c C o l u m n D e f i n i t l o n

~.1.2 DBMS-Independent Part and DBMS-Specific Part of
Relational Area

The relational database subject area consists of the following
parts:

1. The DBMS-independent part contains constructs that
model features that conceivably could apply to a vari-
ety of DBMSs (database management systems), each of
which implements SQL.

2. Each DBMS-apecific part contains constructs that
model features that are specific to the implementation
(or operating system) of a DBMS. These features are
unlikely to apply to other DBMSs. For example, the
constructs might model physical storage or informa-
tion from the DBMS catalog. Each DBMS can have
a DBMS-specific part of the relational database subject
area. In the current design of the information model, the
only DBMSs for which IBM supplies a DBMS-specific
part are Database 2 (DB2) for MVS and Database 2
for OS/2. Relationship types connect constructs in
a DBMS-specific part and constructs in the DBMS-
independent part.

To store all the information needed to generate SQL state-
ments for a particular DBMS, it is usually necessary to
populate instances of constructs in the DBMS-independent
part and instances of constructs in the part that is spe-
cific to that DBMS. For example, in Figure 7, the Colum-
nDefinition object class contains column attr ibutes that ap-
ply to all relational DBMSs, while the MRDColumnDefExt
object class contains column attributes that are specific to

ACM SIGSOFT Software Engineering Notes vol 22 no 2 March 1997 Page 33

Database 2 for MVS; the name "MRD" comes from "MVS
Relational Database." Instances of some constructs in the
DBMS-independent par t can be related to instances of con-
structs in any number of different DBMS-speeifie parts.

Column
D e f i n i t i o n

RefinedBy MRDColumn
DefExt

Figure T. DBMS-independent and DBMS-specific
constructs

SQL has many versions, and the DBMS-independent part re-
flects some of the features that appear in one or more of these
versions of SQL:

• The Entry level (and, in a few cases, the full level) of
"Database Language SQL," X3.135-1992, American Na-
tional Standards Insti tute (ANSI), 1992

• IBM SQL (a product-independent specification within
IBM)

• Database 2 for MVS (DB2 for MVS)
• Database 2 for AIX/6000 (DB2/6000)
• Database 2 for OS/2 (DB2/2)
• S Q L / D a t a System (SQL/DS)
• Structured Query Language/400 (SQL/4O0)

A DBMS might support only a subset of the features that
appear in the DBMS-independent part. Therefore, when a
tool performs validation (checking) of the DBMS-independent
part or generates SQL statements based on the DBMS-
independent part , some aspects of the tool's actions might
be specific to the DBMS.

~.1.3 Places to Specify Uniqueness (Table vs. Indez}

An instance of the KeyDefinition object class represents the
definition of a key in a table definition that forms the basis
for any number of SQL tables. An SQL key is an ordered
set of columns from a table. An instance of a key can serve
as the basis for any combination of several possible uses for
the key's set of columns, namely a unique key (perhaps the
pr imary key), a foreign key, and an index key.

Different relational DBMSs can have different ways to specify
uniqueness. For example, IBM SQL and the ANSI standard
for SQL specify a UNIQUE clause in a CREATE TABLE
statement. Some old releases of DB2 for MVS only specify
a UNIQUE keyword in a CREATE INDEX statement. The
current release of DB2 has both ways; a table with a UNIQUE
(or PRIMARY KEY) clause but no unique index is valid,
but it cannot be populated until a unique index is created.
SQL/DS automatically creates a unique index if a CREATE
TABLE statement includes a UNIQUE clause. Therefore, if a
key definition is unique, a tool that generates SQL statements
should specify uniqueness in a way that is appropriate for the
target DBMS.

Def £ontainsp)

na~e-
TH I $ EMPLOYEE

F i g u r e 8. An instance diagram that shows s h a r i n g o f
a s t r u c t u r e

~.1.~ Scopes of Name Uniqueness for Relational Database
Constraints

SQL/DS requires uniqueness of nonnull names of unique con-
straints within a table definition. IBM SQL requires unique-
ness of nonnull names of referential constraints within a table
definition. Full ANSI SQL is stricter; it requires uniqueness
of nonnull names of such constraints within a schema.

Accordingly, a constraint assures uniqueness of nonnull names
of such constraints in a table definition. For a stricter DBMS,
a tool can also check uniqueness within a schema.

4.2 S h a r i n g o f Definitions

The information model supports sharing of definitions by
many uses of those definitions.

Sharing is similar but not identical to accommodat ion of di-
versity:

• Accommodation of diversity means tha t one set of con-
structs (object classes and relationship classes) can repre-
sent any of several languages. For example, a structure
(which contains da ta items) can represent a structure in a
programming language and /o r a record type in a database
language.

• Sharing means that one set of instances of constructs can
apply to any of several uses. For example, a structure in-
stance can apply to several PL/1 variables and also to sev-
eral IMS segment definitions.

Accommodation of diversity is a prerequisite for sharing of
definitions by uses (of definitions) that involve different lan-
guages.

Sharing is important , because it lets a customer:

• Establish a central point of control for the definition of some
aspect of data, e.g., the fact that an employee has a name,
an employee number, a social security number, a salary, a
telephone number, etc.

• Ease application developers' use of such a definition.
• Minimize redundancy among definitions.

~.2.I Sharing of Structures

A structure is an ordered set of components. For example,
many programming languages (e.g., COBOL, PL/1 , and C)
allow data items to be structures, which contain other da ta
items. Similarly, IMS segments are structures tha t contain
fields.

ACM SIGSOFT Software Engineering Notes vol 22 no 2 March 1997 Page 34

A team of application designers might want to record centrally
(and with minimal redundancy) that EMPLOYEE contains
NAME, SALARY, MANAGER, DEPARTMENT, and other
components. Several applications and languages will use this
central definition. To accomplish this, instances of constructs
in several languages can all share a structure for EMPLOYEE,
and that structure can be related to constructs for NAME,
SALARY, etc. For example, an IMS segment definition and
a PL/1 variable definition can share one EMPLOYEE struc-
ture. Figure 8 is an instance diagram that shows a PL/1
variable definition named THIS_EMPLOYEE (depicted by
an instance of the IncludedSourceDef object class) and an
IMS segment definition named EMPLOYEE (depicted by an
instance of the Segment object class) that share a structure
named EMPLOYEE. The DataStructure object class has rela-
tionships (not shown in the figure) to object classes that rep-
resent language-specific information. As an additional level
of sharing within one language, several PL/1 data items, for
example, might all use one structure.

~.~.Y~ Sharing of Relational Database Definitions Across
Database Sites

The information model lets a user define a set of database
structures (for tables, views, indexes, constraints, etc.) and
instantiate that set for each of several database sites. This
sharing minimizes redundancy if a user installs an application
and its database structures at each of several database sites.
For example, Figure 9 shows a many-to-one relationship class
(HasDefinition) between Table (a use of the TableDefinition)
and TableDefinition.

Table (Has |Table Definition 141Def init ion L
F i g u r e 9. S h a r i n g ac ros s d a t a b a s e s i tes

The table definition contains a suggested table name, and the
table contains the actual table name at the site. Therefore, in-
formation that can refer to names (search conditions in check
constraints and selects in views) can appear abstractly (us-
ing suggested names) in definitions and concretely (using real
names) in site-specific uses.

4.3 S u p p o r t fo r I m p a c t Ana lys i s

If an application developer changes the definition of some in-
formation, that change can cause changes in other definitions
that depend on the first definition. For example, eliminating a
column of a table or view can affect views that come from the
table or view, which in turn can affect views that come from
the affected view. When a developer considers a change in a
definition, impact analysis is an activity in which the devel-
oper finds the proposed change's effects on other definitions.
Impact analysis has these benefits:

• The likely impact of a proposed change can be known be-
fore the change is made. This can influence a decision on
whether to make the change, and it can help in planning

for the change.
• If a change requires another change, there is a reduced like-

lihood that an application developer will forget to make the
second change.

The information model uses relationships between objects to
support impact analysis. For example, in Figure 10, the Re-
solvesInPRDB relationship class connects the ViewDefinition
and PersistentRelDef object classes. A persistent relation is
a superclass of table and view. A instance of the ResolvesIn-
PRDB relationship class represents the fact that a view defi-
nition comes from a persistent relation definition in the view
definition's SELECT clause. A tool for impact analysis can
follow this instance to help determine the impact of changes
in the definition of a table or view.

L View I Resolves I Persistent Definition InPRDB RelDef
, ~

i

F i g u r e 10. S u p p o r t fo r i m p a c t ana lys i s

5. S U M M A R Y

We have described the use of IBM's object-oriented informa-
tion model, which lets a customer share data among various
application development tools. We discussed (1) techniques
for diagrams (an essential part of communication between a
designer and other designers or tool writers), (2) organization
of the design of the information model (an essential step when
many designers design anything large), and (3) technical con-
tent. We hope that these discussions of our experience can
be valuable for further design of the information model and
for other design efforts, e.g., involving other models or other
integration of tools.

A C K N O W L E D G E M E N T S

Kevin Cattell, Bin Cromer, Ed Downing, John Garth, Kathie
Goldberg, Ken Hardy, Dave Hubbard, Eric Lin, Carole
Mayrhofer, Bruce Neuchterlein, Becky Nin, Ahmad Nouri,
Chris Porter, and Tom Potok also designed parts of the infor-
mation model. We thank Kevin Cattell, Leslie Gornig, Kevin
Haga, Eric Lin, and Mary Vinopal for reviewing an earlier
draft of this paper.

R E F E R E N C E S

March, S. T. (Ed.), Entlty-Relationship Approach, Elsevier Science Pub-
lishers, Neth., 1988 (Proe. 6th Intl. Conf. Entity-Relationshlp Ap-
proach, Nov. 1987).

Martin, J., P~inciples of Object-Oriented Analysis and Design, Prentice-
Hell, Englewood Cliffs, N J, 1993.

Moriarty, T. et el., *'Which is the 'Right' Data Model for a Given Prob-
lem?," in March, S. T. (Ed.), Entity-Relatlonship Approach, Elsevier Sci-
ence Publishers, Neth., 1988 (Proc. 6th Intl. Conf. Entity-Relationship
Approach, Nov. 1987).

Rumbaugh, J. et el., Object-Oriented Modeling and Design, Prentice-
Hall, Englewood Cliffs, N J, 1991.

Sowa, J., Conceptual Structures: Information Pl"occssing in Mind and
Machine, Addlson-Wesley, Reading, MA, 1984.

